Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Influence of the electric double layer on induced pressure fields and development lengths in electro-osmotic flows

Zhang, Yonghao and Gu, X.J. and Barber, Robert W. and Emerson, David (2005) Influence of the electric double layer on induced pressure fields and development lengths in electro-osmotic flows. Modern Physics Letters B, 19 (28-29). pp. 1655-1658. ISSN 0217-9849

[img]
Preview
PDF (strathprints006977.pdf)
strathprints006977.pdf

Download (548kB) | Preview

Abstract

Electro-osmotic flow can be used as an efficient pumping mechanism in microfluidic devices. For this type of flow, frictional losses at the entrance and exit can induce an adverse longitudinal pressure distribution that can lead to dispersive effects. The present study describes a numerical investigation of the influence of the electric double layer on the induced pressure field and the flow development length. The induced pressure gradient is affected by the volumetric flow rate, fluid viscosity and the channel height. When the electric double layer is small, the development length remains constant at 0.57 of the channel height but decreases as the double layer grows in thickness.