Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Gas flow in microchannels - a Lattice Boltzmann method approach

Zhang, Yonghao and Qin, Rongshan and Sun, Y.H. and Barber, Robert W. and Emerson, David (2005) Gas flow in microchannels - a Lattice Boltzmann method approach. Journal of Statistical Physics, 121 (1-2). pp. 257-267. ISSN 0022-4715

[img]
Preview
PDF (strathprints006976.pdf)
strathprints006976.pdf

Download (272kB) | Preview

Abstract

Gas flow in microchannels can often encounter tangential slip motion at the solid surface even under creeping flow conditions. To simulate low speed gas flows with Knudsen numbers extending into the transition regime, alternative methods to both the Navier-Stokes and direct simulation Monte Carlo approaches are needed that balance computational efficiency and simulation accuracy. The lattice Boltzmann method offers an approach that is particularly suitable for mesoscopic simulation where details of the molecular motion are not required. In this paper, the lattice Boltzmann method has been applied to gas flows with finite Knudsen number and the tangential momentum accommodation coefficient has been implemented to describe the gas-surface interactions. For fully-developed channel flows, the results of the present method are in excellent agreement with the analytical slip-flow solution of the Navier-Stokes equations, which are valid for Knudsen numbers less than 0.1. The present paper demonstrates that the lattice Boltzmann approach is a promising alternative simulation tool for the design of microfluidic devices.