Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Particle separation in microfluidic devices - SPLITT fractionation and microfluidics

Zhang, Yonghao and Barber, Robert W. and Emerson, David (2005) Particle separation in microfluidic devices - SPLITT fractionation and microfluidics. Current Analytical Chemistry, 1 (3). pp. 345-354. ISSN 1573-4110

[img]
Preview
PDF (strathprints006972.pdf)
strathprints006972.pdf

Download (655kB) | Preview

Abstract

In recent years, microfluidic devices have been increasingly used to separate particles such as colloids, macromolecules, cells, beads and droplets. Miniaturisation often introduces new functionalities and paradigms that are not possible at conventional macroscopic scales. In this paper, split-flow-thin fractionation techniques for particle separation are reviewed and the underlying physics of particle migration is discussed. The potential of these particle separation techniques in the design of integrated microfluidic systems is described. We then illustrate how numerical simulation can provide an increased understanding of the fluid-particle motion. The advantages of numerical simulation for rational design and operation of microfluidic devices are highlighted through two practical examples involving an ultrasonic cell washing system and a quadrupole magnetic flow sorter.