Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Bayesian variants of some classical semiparametric regression techniques

Koop, G.M. and Poirier, D. (2004) Bayesian variants of some classical semiparametric regression techniques. Journal of Econometrics, 123 (2). pp. 259-282. ISSN 0304-4076

[img]
Preview
PDF (strathprints006912.pdf)
strathprints006912.pdf

Download (2MB) | Preview

Abstract

This paper develops new Bayesian methods for semiparametric inference in the partial linear Normal regression model: y=zβ+f(x)+var epsilon where f(.) is an unknown function. These methods draw solely on the Normal linear regression model with natural conjugate prior. Hence, posterior results are available which do not suffer from some problems which plague the existing literature such as computational complexity. Methods for testing parametric regression models against semiparametric alternatives are developed. We discuss how these methods can, at some cost in terms of computational complexity, be extended to other models (e.g. qualitative choice models or those involving censoring or truncation) and provide precise details for a semiparametric probit model. We show how the assumption of Normal errors can easily be relaxed.