Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Effects of plies assembling on textile composite cellular structures

Tan, Xincai and Chen, Xiaogang and Conway, Paul P. and Yan, X.T. (2007) Effects of plies assembling on textile composite cellular structures. Materials and Design, 28 (3). pp. 857-870. ISSN 0261-3069

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Cellular structures are generally assembled with face sheet plies in their application. It is necessary to understand the influence of assembled plies on deformation and energy absorption before using textile composite cellular structures in engineering design. In this paper, effects of ply assembly, outer ply material, outer ply thickness, and loading area on energy absorption and deformation of the applied structure including cellular structure and face sheet plies are investigated. Three-dimensional finite element analyses are carried out employing orthotropic mechanical properties of the applied materials, textile composite, wood, E-glass, aluminium alloy 2024-T3 and unidirectional fiber-epoxy composite T-300. The predicted results show that deformation and distributed strain energy density of both outer and inner surfaces of the applied structure are significantly affected by ply assembly, outer ply material, outer ply thickness, and loading area.