Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame

Lim, J.B.P. and Nethercot, D.A. (2002) F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame. Steel and Composite Structures, 2 (6). pp. 411-428. ISSN 1229-9367

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure: (1) buckling of the stiffened free-edge into one-half sine wave, (2) local plate buckling of the exposed triangular bracket area. The results of full-scale laboratory tests on selected geometries of eaves bracket demonstrate that the proposed design recommendations are conservative. The use of the finite element method in this way exploits modern computational techniques for an otherwise difficult structural design problem.