Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The contrasting oceanography of the Rhodes Gyre and the Central Black Sea

Gaines, A.F. and Copeland, G.J.M. and Coban-Yildiz, Y. and Ozsoy, E. and Davie, A.M. and Konovalov, S.K. (2006) The contrasting oceanography of the Rhodes Gyre and the Central Black Sea. Turkish Journal of Engineering and Environmental Sciences, 30. pp. 69-81. ISSN 1300-0160

[img]
Preview
PDF (strathprints006844.pdf)
strathprints006844.pdf

Download (468kB) | Preview

Abstract

The Rhodes Gyre, a prominent feature of the oceanography of the eastern Mediterranean, is modelled as a vertical, continuous flow, cylindrical reactor illuminated during the day at its upper end. If the Gyre is supposed to be in a steady state whilst the concentrations, C, of a chemical are being measured, the nett rate of formation or consumption of the chemical is given by -w d C/d z + u d C/d r, where w is the upward velocity of the water in the vertical, z , direction and u is the velocity of the water in the radial, r, direction. The behaviour of w and u is analysed to show that the Gyre may be used as a field laboratory in which rates of chemical change may be derived from depth profiles together with values of the surface velocities of the Gyre waters. In contrast, the central Black Sea is modelled as an ideal, strongly stratified sea in which the nett rates of formation or consumption of chemicals under steady state conditions are given by Ds d2C/ds 2, where s is the water density and Ds is an eddy diffusion coefficient. Computations reveal that, given better knowledge of its eddy diffusion coefficients, the Black Sea can also be treated as a field laboratory where rates of reaction mediated by bacteria may be derived from depth profiles.