Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Adjoint sensitivity analysis for fluid flow with free surface

Gejadze, I.Y. and Copeland, G.J.M. (2005) Adjoint sensitivity analysis for fluid flow with free surface. International Journal of Numerical Methods in Fluids, 47 (8-9). pp. 1027-1034. ISSN 0271-2091

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper develops the adjoint sensitivities to the free surface incompressible barotropic Euler equations in order to allow for the assimilation of measurements of currents and free surface elevations into an unsteady flow solution by boundary control. To calculate a variation in a surface variable, a mapping is used in the vertical to shift the problem into a fixed domain. Then a variation is evaluated from the Jacobian matrix of the mapping. After calculating a variation in the surface variable and applying the inverse transformation, the tangent linear model is considered in the original space where the adjoint equations are then derived. The method is demonstrated by application to an unsteady flow in an open channel (a 2D vertical section model). A wider application is to the construction of a fully three-dimensional coastal ocean model that allows assimilation of tidal elevation and current data.