Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Sediment management in sustainable urban drainage system (SUDS) ponds

Heal, K.V. and Hepburn, D.A. and Lunn, R.J. (2006) Sediment management in sustainable urban drainage system (SUDS) ponds. Water Science and Technology, 53 (10). pp. 219-227. ISSN 0273-1223

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Since removal and disposal of sustainable urban drainage system (SUDS) sediment can incur high maintenance costs, assessments of sediment volumes, quality and frequency of removal are required. Sediment depth and quality were surveyed annually from 1999-2003 in three ponds and one wetland in Dunfermline, Scotland, UK. Highest sediment accumulation occurred in Halbeath Pond, in the most developed watershed and with no surface water management train. From comparison of measured potentially toxic metal concentrations (Cd, Cr, Cu, Fe, Ni, Pb, Zn) with standards, the average sediment quality should not impair aquatic ecosystems. 72-84% of the metal flux into the SUDS was estimated to be associated with coarse sediment (>500 μm diameter) suggesting that management of coarse sediment is particularly important at this site. The timing of sediment removal for these SUDS is expected to be determined by loss of storage volume, rather than by accumulation of contaminants. If sediment removal occurs when 25% of the SUDS storage volume has infilled, it would be required after 17 years in Halbeath Pond, but only after 98 years in Linburn Pond (which has upstream detention basins). From the quality measurements, sediment disposal should be acceptable on adjacent land within the boundaries of the SUDS studied.