Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Anatomical flow phantoms of the carotid bifurcation: potential application in training and assessment of endovascular device deployment

Black, R.A. and Watts, D.M. and Meagher, S. and Poepping, T.L. and Morgan, R.H. and Wardlaw, J. and Connell, M. and Sutcliffe, C.J. and Hoskins, P.R. (2006) Anatomical flow phantoms of the carotid bifurcation: potential application in training and assessment of endovascular device deployment. Journal of Cardiovascular Surgery, 47. pp. 43-44. ISSN 1749-8090

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Doppler ultrasound is widely used in the diagnosis and monitoring of arterial disease. Current clinical measurement systems make use of continuous and pulsed ultrasound to measure blood flow velocity; however, the uncertainty associated with these measurements is great, which has serious implications for the screening of patients for treatment. Because local blood flow dynamics depend to a great extent on the geometry of the affected vessels, there is a need to develop anatomically accurate arterial flow phantoms with which to assess the accuracy of Doppler blood flow measurements made in diseased vessels. In this paper, we describe the computer-aided design and manufacturing (CAD-CAM) techniques that we used to fabricate anatomical flow phantoms based on images acquired by time-of-flight magnetic resonance imaging (TOF-MRI). Three-dimensional CAD models of the carotid bifurcation were generated from data acquired from sequential MRI slice scans, from which solid master patterns were made by means of stereolithography. Thereafter, an investment casting procedure was used to fabricate identical flow phantoms for use in parallel experiments involving both laser and Doppler ultrasound measurement techniques.