Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells

Williamson, M. and Black, R.A. and Kielty, C.M. (2006) PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials, 27 (19). pp. 3608-3616. ISSN 0142-9612

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new compliant scaffold suitable for small-diameter vascular grafts has been developed that promotes strong attachment of endothelial cells. Composite scaffolds were produced by wet spinning polycaprolactone (PCL) fibres which form the luminal surface, then electrospinning porous polyurethane (PU) onto the back of the PCL fibres to form the vessel wall substitute. Human endothelial cells demonstrated strong attachment to the composite PCL-PU scaffold, and proliferated to form a monolayer with strong PECAM-1 expression and cobblestone morphology. Attached cells demonstrated abundant release of von Willebrand factor, nitric oxide and ICAM-1 under physiological stimuli, and exhibited an immune response to lipopolysaccharide. The composite scaffold may also deliver bioactive molecules. Active trypsin, used as a test molecule, had a defined 48 h pattern of release from luminal PCL fibres. These data confirm the potential of this novel composite scaffold in vascular tissue engineering.

Item type: Article
ID code: 6818
Keywords: polycaprolactone, polyurethane, vascular tissue engineering, endothelial cells, bioengineering, Bioengineering, Physiology, Biomaterials, Bioengineering, Mechanics of Materials, Ceramics and Composites, Biophysics
Subjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering
Science > Physiology
Department: Faculty of Engineering > Bioengineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 03 Sep 2008
    Last modified: 04 Sep 2014 17:18
    URI: http://strathprints.strath.ac.uk/id/eprint/6818

    Actions (login required)

    View Item