Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Anatomical flow phantoms of the nonplanar carotid bifurcation, Part II: experimental validation with Doppler ultrasound

Meagher, S. and Poepping, T. and Ramnarine, K. and Black, R.A. and Hoskins, P.R. (2007) Anatomical flow phantoms of the nonplanar carotid bifurcation, Part II: experimental validation with Doppler ultrasound. Ultrasound in Medicine and Biology, 33 (2). pp. 303-310. ISSN 0301-5629

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A nonplanar wall-less anatomical flow phantom of a healthy human carotid artery is described, the construction of which is based on a lost-core technique described in the companion paper (Part I) by Watts et al. (2006). The core was made by rapid prototyping of an idealized three-dimensional computer model of the carotid artery. Flow phantoms were built using these idealized non planar carotid artery bifurcations. Physiologically realistic flow waveforms were produced with resistance index values of 0.75, 0.72 and 0.63 in the common, external and internal carotid artery branches, respectively. Distension of the common carotid using M-mode imaging was found to be at 10% of diameter. Although differences in vessel diameter between the phantom and that of the original computer model were statistically significant (p < 0.05), there was no difference (p > 0.05) in measurements made on the lost-cores and those obtained by B-mode ultrasound on the resulting flow phantoms. In conclusion, it was possible to reliably reproduce geometrically similar anatomical flow phantoms that are capable of producing realistic physiological flow patterns and distensions.