Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Single-trial multiwavlet coherence in application to neurophysiological time series

Brittain, J.S. and Halliday, D.M. and Conway, B.A. and Nielsen, J.B. (2007) Single-trial multiwavlet coherence in application to neurophysiological time series. IEEE Transactions on Biomedical Engineering, 54 (5). pp. 854-862. ISSN 0018-9294

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A method of single-trial coherence analysis is presented, through the application of continuous multiwavelets. Multiwavelets allow the construction of spectra and bivariate statistics such as coherence within single trials. Spectral estimates are made consistent through optimal time-frequency localization and smoothing. The use of multiwavelets is considered along with an alternative single-trial method prevalent in the literature, with the focus being on statistical, interpretive and computational aspects. The multiwavelet approach is shown to possess many desirable properties, including optimal conditioning, statistical descriptions and computational efficiency. The methods are then applied to bivariate surrogate and neurophysiological data for calibration and comparative study. Neurophysiological data were recorded intracellularly from two spinal motoneurones innervating the posterior biceps muscle during fictive locomotion in the decerebrated cat.