Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The in vitro adsorption of cytokines by polymer-pyrolysed carbon

Howell, C.A. and Sandeman, S.R. and Phillips, G.J. and Lloyd, A.W. and Davies, J.A. and Mikhalovsky, S.V. and Tennison, S.R. and Rawlinson, A.P. and Kozynchenko, O.P. and Owen, H.L.H. and Gaylor, J.D.S. and Rouse, J.J. and Courtney, J.M. (2006) The in vitro adsorption of cytokines by polymer-pyrolysed carbon. Biomaterials, 27 (30). pp. 5286-5291. ISSN 0142-9612

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This study investigated a range of phenolformaldehydeaniline based pyrolysed carbon matrices and their component materials, for their ability to adsorb a range of inflammatory cytokines crucial to the progression of sepsis. The efficiency of adsorption of the target molecules from human plasma was assessed and compared to that of Adsorba® 300C, a commercially available cellulose-coated activated charcoal. Results indicate that a number of the primary carbon/resin materials demonstrate efficient adsorption of the cytokines studied here (TNF, IL-6 and IL-8), comparable to other adsorbents under clinical investigation. Our findings also illustrate that these adsorbent capabilities are retained when the primary particles are combined to form a pyrolysed carbon matrix. This capability will enable the engineering of the carbon matrix porosity allowing a blend of carbonised particle combinations to be tailored for maximum adsorption of inflammatory cytokines. The present findings support further investigation of this carbon material as a combined carbon-based filtration/adsorbent device for direct blood purification.