Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Pretreatment of rats with the inducing agents phenobarbitone and 3-methylcholanthrene ameliorates the toxicity of chromium (VI) in hepatocytes

Gunaratnam, M. and Pohlscheidt, M. and Grant, M.H. (2002) Pretreatment of rats with the inducing agents phenobarbitone and 3-methylcholanthrene ameliorates the toxicity of chromium (VI) in hepatocytes. Toxicology in Vitro, 16 (5). pp. 509-516. ISSN 0887-2333

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

To exert cytotoxicity chromium VI (Cr(VI)) has to be reduced inside cells. This is achieved through both enzymatic and non-enzymatic mechanisms. Enzymatic mechanisms include DT-diaphorase, cytochrome P450, and NADPH cytochrome c reductase, and non-enzymatic mechanisms involve reduced glutathione (GSH) and ascorbic acid. The extent of cytotoxicity of Cr(VI) may thus be influenced by the availability of non-enzymatic reductants, and by the activities of the reductase enzymes. In the present paper we have investigated the effect of pretreatment with the inducing agents, phenobarbitone (PB) and 3-methylcholanthrene (3-MC), on the response of rat hepatocytes to Cr(VI). Pretreatment with PB increased the activity of NADPH cytochrome c reductase, and 3-MC increased DT-diaphorase activity in hepatocytes. Both inducers increased cytochrome P450 content, while neither influenced intracellular GSH content or the activity of glutathione reductase. Pretreatment with either PB or 3-MC resulted in amelioration of Cr(VI) toxicity both in terms of hepatocyte viability, and to a greater extent, in terms of Cr(VI) induced GSH loss. We propose that the inducing agents increase the amount of enzymatic reduction of Cr(VI) relative to non-enzymatic reduction. Thus, less GSH is used in the reduction of Cr(VI), and intracellular GSH does not fall as rapidly as in cells from control animals therefore cell integrity is better maintained. Exposure to environmental inducing agents in vivo may also alter the response of human tissues to Cr(VI).