Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A novel instrumented ring for the measurement of grip force adjustments during precision grip tasks

van der Kamp, M. and Conway, B.A. and Nicol, A.C. (2001) A novel instrumented ring for the measurement of grip force adjustments during precision grip tasks. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 215 (H4). pp. 421-427. ISSN 0954-4119

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A wide range of scientific and clinical research studies use the measurement of grip force to quantify hand function and activities during daily living. Many applications of instrumented objects can be found in the biomechanical and neurophysiological literature. However, these were found not to be suitable for the measurement of grip force and force modulations during precision grip independently from the hand orientation. The low-cost precision grip force transducer described here is capable of recording magnitude, direction and modulation of the force exerted on a closed ring. The design is based on a standard proving ring, onto which a second set of strain gauges is applied. The outputs of both Wheatstone bridges yield a unique signature for every position under a two-point load. The tested aluminium ring had an outer diameter of 83 mm, a wall thickness of 3 mm and a height of 12mm. With eight single bending strain gauges used, the maximum load was 100N. During a grip task, tremor components from d.c. to 45 Hz could be detected. The newly developed ring might therefore find a use in many biomechanical and neurophysiological studies as a tool for measuring grip force and its fine modulations.