Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Computational methods and experimental validation of welding distortion models

Camilleri, D. and Mollicone, P. and Gray, T.G.F. (2007) Computational methods and experimental validation of welding distortion models. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 221 (4). pp. 235-249. ISSN 1464-4207

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Multiply-stiffened, thin plate, welded fabrications are used in a wide variety of transport fields, however the resulting out-of-plane distortion associated with welding exacts a severe design penalty. Depending on the information required, the size of the structure under investigation and the computer power at hand, three computational strategies may be considered to predict welding distortion. If prediction of the localized residual stresses from welding is of major importance, then a full transient, uncoupled thermo-elastoplastic analysis is preferred. This method is not readily applicable to predict welding distortions in industrial-scale welded structures. More computationally efficient models are required and two other models are suggested in the current study. A series of experimental tests of a realistic nature were performed to validate the proposed computational strategies. Computational and experimental study of butt and fillet welding of small and industrial size fabrications is considered.