Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Computational methods and experimental validation of welding distortion models

Camilleri, D. and Mollicone, P. and Gray, T.G.F. (2007) Computational methods and experimental validation of welding distortion models. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 221 (4). pp. 235-249. ISSN 1464-4207

Full text not available in this repository. (Request a copy from the Strathclyde author)


Multiply-stiffened, thin plate, welded fabrications are used in a wide variety of transport fields, however the resulting out-of-plane distortion associated with welding exacts a severe design penalty. Depending on the information required, the size of the structure under investigation and the computer power at hand, three computational strategies may be considered to predict welding distortion. If prediction of the localized residual stresses from welding is of major importance, then a full transient, uncoupled thermo-elastoplastic analysis is preferred. This method is not readily applicable to predict welding distortions in industrial-scale welded structures. More computationally efficient models are required and two other models are suggested in the current study. A series of experimental tests of a realistic nature were performed to validate the proposed computational strategies. Computational and experimental study of butt and fillet welding of small and industrial size fabrications is considered.

Item type: Article
ID code: 6700
Keywords: computational methods, welding, thermo-elastoplastic, fabrications, welding distortion, computational strategy, Mechanical engineering and machinery, Materials Science(all), Mechanical Engineering
Subjects: Technology > Mechanical engineering and machinery
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Depositing user: Strathprints Administrator
Date Deposited: 21 Aug 2008
Last modified: 20 Oct 2015 12:34

Actions (login required)

View Item View Item