Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

An empirical validation of modelling solar gain through a glazing unit with external and internal shading screens

Loutzenhiser, P.G. and Manz, H. and Felsmann, C. and Strachan, P.A. and Maxwell, G.M. (2007) An empirical validation of modelling solar gain through a glazing unit with external and internal shading screens. Applied Thermal Engineering, 27 (2-3). pp. 528-538. ISSN 1359-4311

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Empirical validations are integral components in assessing the overall accuracies of building energy simulation programs. Two test cell experiments were performed at the Swiss Federal Laboratories for Material Testing and Research's (EMPA) campus in Duebendorf, Switzerland to evaluate the solar gain models with external and internal shading screens in four building energy simulation programs including: (1) EnergyPlus, (2) DOE-2.1E, (3) TRNSYS-TUD, and (4) ESP-r. Detailed information about the shading screen properties, modeling procedures, and thorough statistical and sensitivity analyses of simulation results are provided. For the external shading screen experiment, the mean percentage of the absolute difference between measured and simulated cooling power to maintain a near-constant cell air temperature for EnergyPlus, DOE-2.1E, TRNSYS-TUD and ESP-r were 3.7%, 5.5%, 10.6%, and 7.5%, respectively. EnergyPlus and DOE-2.1E were considered validated within 95% credible limits. For the internal shading screen experiment, the mean percentage of the absolute mean differences for EnergyPlus, DOE-2.1E, TRNSYS-TUD, and ESP-r were 6.7%. 13.8%, 5.7%, and 4.3%, respectively; only ESP-r was considered validated within 95% credible limits.