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ABSTRACT 

With the development of micro/nano-devices, low speed 
rarefied gas flows have attracted significant research interest 
where successful numerical methods for traditional high speed 
flows, including the direct simulation Monte Carlo method, 
become computationally too expensive. As the Knudsen 
number can be up to the order of unity in a micro/nano flow, 
one approach is to use continuum-based methods including the 
Navier-Stokes-Fourier (NSF) equations, Burnett/super Burnett 
equations, and moment models. Limited success has been 
achieved because of theoretical difficulties and/or numerical 
problems.  

The recently developed lattice Boltzmann equation (LBE) 
offers a fundamentally different approach which is close to 
kinetic methods but with a significantly smaller computational 
cost. However, success of LBE methods for rarefied gas motion 
has been mainly on isothermal flows. In this paper, thermal 
rarefied gas flows are investigated. Due to the unique features 
of micro/nano flows, a simplified thermal lattice Boltzmann 
model with two distribution functions can be used. In addition, 
kinetic theory boundary conditions for the number density 
distribution function can be extended to construct a thermal 
boundary condition. The model has been validated in the slip-
flow regime against solutions of the NSF equations for shear 
and pressure driven flows between two planar plates. It is 
shown that the present thermal LBE model can capture some 
unique flow characteristics that the NSF equations fail to 
predict. The present work indicates that the thermal lattice 
Boltzmann model is a computationally economic method that is 
particularly suitable to simulate low speed thermal rarefied gas 
flows.  
 
Keywords: lattice Boltzmann method, microfluidics, 
nanofluidics, non-equilibrium flow 
 
NOMENCLATURE 

Symbol Description    Unit 
cs lattice speed of sound   m/s 
D flow dimension 
e lattice velocity    m/s 
F external force    N 
f number density distribution function 
g energy density distribution function 
H distance between two parallel plates m 
k Thermal conductivity    W/(m.K) 
Kn Knudsen number 
l mean free path    m 
Ma Mach number 
NH lattice number across the characteristic  

length of the flow domain 
p pressure     N/m2 
R specific gas constant   J/K/kg 
T temperature    K 
t time     s 
Umean averaged velocity    m/s 
Uplate  velocity of the upper plate   m/s 
u macroscopic velocity   m/s 

Greek symbols 
ε energy     J/kg  
λ relaxation time for number density  

distribution function   s 
λt relaxation time for energy density  

distribution function   s 
µ dynamic viscosity   N.s/m2 
ν viscosity     m2/s 
ρ density     kg/m2 
τ nondimensional relaxation time  - 
ω constant     - 

Subscripts 
i physical coordinate direction 
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k lattice direction 
ref reference properties 

Superscript 
eq equilibrium state 

  
INTRODUCTION 

In micro/nano-devices, gas flows are characterized rarefied 
and low speed, i.e. the Knudsen number can be up to the order 
of unity while the Mach number is negligibly small. 
Traditionally, research interest for rarefied gas flows has been 
for high speed or vacuum applications, where directly solving 
the Boltzmann equation or using the direct simulation Monte 
Carlo (DSMC) method offers accurate numerical solutions. 
However, for low speed gas flows, these methods become 
computationally too expensive with DSMC suffering from 
large statistical scatter and the direct solution of the Boltzmann 
equation is very complex [1, 2]. Meanwhile, continuum-based 
methods such as the Navier-Stokes-Fourier (NSF) equations 
and the Burnett equations have failed to produce satisfactory 
results for low-speed gas flows in the transition regime. Despite 
significant progress being made in coupling the NSF equations 
with the BGK model [3], developing the Information 
Preservation (IP) method for DSMC [4], and reducing the 
statistical scatter associated with Monte Carlo methods [5], no 
comprehensive and numerically-economical model exists for 
gas micro/nano-flows with Knudsen numbers up to unity. There 
is an urgent demand for an efficient and accurate numerical 
method for the low speed rarefied gas flows often encountered 
in micro/nano-systems. 

Recently, the lattice Boltzmann method has attracted 
significant interest for simulating micro/nano-flows where the 
microscopic and macroscopic behaviors are coupled [6-17]. It 
retains a computational efficiency comparable to NSF solvers, 
and is potentially a more accurate model for gas flows over a 
broad range of Knudsen numbers. While Guo, Zhao and Shi 
[18] argued that current lattice Boltzmann models cannot be 
valid in the transition flow regime (0.1<Kn<10), Sbragaglia et 
al. [19] have shown that lattice Boltzmann equation (LBE) can 
be valid for rarefied gas flows with Knudsen number up to the 
order of unity. Shan, Yuan and Chen [20] have developed a 
theoretical framework for higher-order LBE models based on 
an expansion of the Boltzmann distribution function. However, 
most work has focused on developing new slip velocity 
boundary conditions for isothermal flows. Here, we investigate 
whether a LBE model can produce sufficiently accurate 
solutions for thermal rarefied gas flows. 

 
THERMAL LB MODEL 

Unlike the success of isothermal (athermal) LBE models, 
thermal LBE models have not been satisfactory in dealing with 
realistic thermal flows. Due to the broad application of thermal 
flows, continuous effort has been made to construct thermal 
LBE models and improve numerical stability. However, 
thermodynamically consistent thermal LBE models are still 
expected, while numerical instability of the current thermal 
LBE models also defers the model application. Current thermal 
LBE models may be divided into three categories: multispeed 
models [21-23], two distribution function models [24-26] and 
hybrid schemes [27, 28]. The multi-speed models use a large 
set of discrete velocities with higher-order velocity terms in the 

equilibrium distribution function. Therefore, the macroscopic 
energy conservation equation can be obtained correctly. These 
models, however, have suffered from numerical instability and 
the single relaxation time leads to an unphysical fixed Prandtl 
number. The hybrid schemes employ other methods including a 
finite difference scheme to solve the temperature equation 
while the velocity field is determined by the LBE model. This 
approach does not take advantage of the mesoscopic feature of 
the LBE methods. The two relaxation time schemes use two 
sets of distribution functions, for particle number and energy 
densities, to trace velocity and temperature evolution so that the 
problems associated with multi-speed models become 
amenable. 

He, Chen and Doolen [26, 29] have established a two-
distribution function model which relates the energy density 
distribution function to the number density distribution 
function. In addition, viscous heating and compression work 
are considered in their model. Recently, Shi, Zhao and Guo 
[30] have proposed an improved model which simplifies the 
numerical algorithm of He, Chen and Doolen. Whether thermal 
LBE models are applicable, with reasonable accuracy, to 
simulate thermal rarefied gas flows and micro/nano flows in 
particular remains unknown. Here, a modified two-distribution 
function model based on refs [26, 30] will be examined to test 
whether it is suitable to simulate low speed rarefied gas flows. 
In addition, a kinetic boundary condition for the energy density 
distribution function will be proposed.   

The evolution of both number and energy density 
distribution functions are given by [26]: 

 

 

and  
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where qk is given by 
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The relation between the two distribution functions is 
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The density distribution function at equilibrium is given by 

                (4) 

The equilibrium distribution function for the energy density is 

 

                (5) 

The macroscopic properties can then be recovered by 
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where ε =DRT/2. 

For gas flows in the micro/nano devices considered here, 
the flow speed is typically very low, i.e. Ma<<1. Therefore, 
both compression work and viscous heating are negligibly 
small. Consequently, the above scheme can be simplified, 
which has been attempted by Peng, Shu and Chew [31]. 
However, the equilibrium energy density distribution functions 
are negative at rest. Recently, Shi, Zhao and Guo [30] proposed 
another similar thermal LBE model but with a simplified 
equilibrium distribution function for the energy density. 
Although the inconsistency of the viscosity in the momentum 
and energy equations may still remain if viscous heating is not 
negligible, as for high speed gas flows, this simplified approach 
can be applied to low speed rarefied gas flows. Another 
advantage of adopting this approach is that the kinetic boundary 
condition for the energy density distribution at the solid wall 
can be readily implemented. Following the simplification 
approach of Shi, Zhao and Guo [30], we obtain a thermal LBE 
model for rarefied gas flows in micro/nano-devices, which is 
given below: 
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In rarefied gas flow, we determine the relaxation time 
from the Knudsen number. For the D2Q9 lattice BGK model, 
the relation between the Knudsen number and the relaxation 

time is
HN

Kn 5.0
3
8 −

=
τ

π
 [6]. For a given Prandtl number, we 

can get the thermal relaxation time. According to kinetic theory, 
the mean free path can be related to the viscosity and the mean 
molecular velocity by 

lca=ν ,               (9) 
where a=0.499 [32], and π/8RTc = . The temperature 
dependent viscosity can be described by: 

,ωρν T∝               (10) 
where the value of ω depends on the molecular interaction 
model, which is between 0.5 for hard sphere interaction and 1 
for Maxwellian interaction [32]. Combining Eqs. (8) and (9), 
the influence of temperature variation on the mean free path 
can be given by 
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Therefore, the local temperature dependent Knudsen number 
can be determined which couples the lattice Boltzmann 
equations for the number and energy density distribution 
functions.  

 

RESULTS AND DISCUSSION 
The present thermal LBE model for gas micro/nano flows 

is simple in terms of numerical implementation and boundary 
conditions. In this section, the model will be examined for both 
shear and pressure driven flows between two infinitely long 
parallel plates. The kinetic boundary conditions as described in 
ref. [17] will be used for the gas molecule interactions with the 
solid wall, while periodic boundary conditions will be used at 
the inlet and outlet so that only three grid points are needed in 
the streamwise direction. 

 
Fig. 1: Nondimensional velocity profiles for planar Couette 
flow at Knudsen numbers of 0.01, 0.05 and 0.1. Comparison of 
the LBE solution with the NSF slip flow solution. 
 

 
Fig. 2: Nondimensional temperature profiles for planar Couette 
flow at Knudsen numbers of 0.01, 0.05 and 0.1. Comparison of 
the LBE solution with the NSF slip flow solution. 
 

Since experimental data are rare for rarefied gas flows in 
micro/nano devices, numerical results obtained from DSMC or 
directly solving the linearized Boltzmann equation are usually 
used for model validation. However, for flows with both small 

,∫= eu fdρ

,∫= egdρε
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Knudsen number and low speed, these methods become not 
only expensive but also inaccurate. When the Knudsen number 
is less than 0.1, the NSF equations with slip boundary 
conditions can provide results with reasonable accuracy. 
Therefore, we mainly compare the present thermal LBE 
solution with the solutions of the NSF equations in order to test 
whether the present thermal LBE is valid in the slip flow 
regime (0.001<Kn<0.1). Note, the velocity slip and temperature 
jump coefficients are only weakly correlated with the molecular 
model [33]. The effect of the molecular model is implemented 
through the viscosity-temperature power law as given by Eq. 
(9). Through the Prandtl number, the influence of the 
temperature on the thermal diffusivity can also be determined. 
For consistent comparisons, the Maxwellian molecule model 
will be used for both thermal LBE and NSF simulations. 

In the following simulations, the temperature difference at 
the two plates is ∆T and the mean temperature is Tref. The 
temperatures at the upper and lower plates are Tref+0.5∆T and 
Tref-0.5∆T, respectively. For planar Couette flow, U is a 
velocity nondimesionalized by Uplate and the lower plate 
remains stationary. The velocity of the upper plate is negligibly 
small in comparison with the sound speed, so that viscous 
heating and compression work can be ignored. In the following 
figures, if not explicitly noted, the temperatures of the lower 
and upper plates are 0.9 Tref and 1.1 Tref , respectively. 

As shown in Fig. 1, the velocity profiles of the present 
thermal LBE model and the NSF equations are in excellent 
agreement. The present thermal LBE can predict not only the 
slip velocities but also the increasing slip motion with the 
Knudsen number. In Fig. 2, the profile of the nondimensional 
temperature, T-non, which is (T-Tref)/ Tref, is shown. When the 
Knudsen number is small, at 0.01, both the thermal LBE model 
and the NSF equations give almost identical solutions. 
However, the discrepancy increases with Knudsen number, 
especially in the near wall region.  

 

 
 

Fig. 3: Nondimensional shear stress profiles for planar Couette 
flow at Knudsen numbers of 0.01, 0.05 and 0.1. Comparison of 
the LBE solution with the NSF slip flow solution. 
 

 
Fig. 4: Nondimensional normal heat flux profiles for planar 
Couette flow at Knudsen numbers of 0.01, 0.05 and 0.1. 
Comparison of the LBE solution with the NSF slip flow 
solution. 

 
Shear stress profiles are presented in Fig. 3, where the 

stresses are nondimensionized by µrefUplate/H. Both the thermal 
LBE model and the NSF equations predict a zero normal stress, 
which is also true for flows with other Knudsen numbers. If 
there is no slip motion at the wall, the nondimensional shear 
stress will be unity. Due to velocity-slip, the magnitude of the 
shear stress is now less than 1.0 despite it still being constant 
across the two plates. As shown in Fig. 3, the magnitude of the 
shear stress decreases with increasing Knudsen number which 
is due to increasing slip velocity. Again, excellent agreement 
has been observed for the stress profiles predicted by the 
thermal LBE and the NSF equations. 

 
Fig. 5: The effect of temperature variation on the 
nondimensional velocity profiles for planar Couette flow at a 
Knudsen number of 0.01. Comparison of the LBE solution with 
the NSF slip flow solution. 
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Fig. 6: The effect of temperature variation on the 
nondimensional temperature profile for planar Couette flow at a 
Knudsen number of 0.01. Comparison of the LBE solution with 
the NSF slip flow solution. 

 
In Fig. 4, the heat flux is nondimensionized by kref∆T/H. 

The tangential heat flux, which is the heat flux in the flow 
direction, is zero because the viscous heating and compression 
work are negligible. Therefore, only heat flux in the normal 
direction is compared in Fig. 4. When Kn is 0.01, the solution 
of the thermal LBE model agrees well with the prediction of the 
NSF equations. However, the discrepancy grows with 
increasing Knudsen number. Again, because of the temperature 
jump at the wall, the heat flux magnitude in the normal 
direction is smaller than unity. In addition, both the thermal 
LBE model and the NSF equations can predict a decreasing 
magnitude of the normal heat flux with increasing Knudsen 
number, i.e. increasing temperature jumps. 

As both viscosity and thermal conductivity depend 
strongly on the temperature, we have examined the effect of the 
temperature on the velocity and temperature profiles in Fig. 5 
and Fig. 6. The temperatures at the upper and lower plates are 
0.9Tref and 1.1 Tref in Case 1, and 0.7 Tref and 1.3 Tref in Case 2. 
It is clearly demonstrated that the large temperature drop 
between the two plates causes the maximum velocity to be 
shifted towards the cold plate and a larger deviation of the 
temperature profile from the linear one. This test case shows 
that the present thermal LBE model is capable of simulating 
thermal flows with large temperature variation. 

Overall, the present thermal LBE performs well in the slip 
flow regime for planar Couette flows. Since the NSF equations 
become inappropriate when the Knudsen number is beyond 0.1, 
the deviation from the solutions of the NSF equations at large 
Knudsen number needs further investigation. 

Since gas usually moves slowly in a pressure driven 
micro/nano channel, the applied pressure gradient can be 
assumed as constant in the fully-developed and steady flow 
status. Therefore, we can treat the uniform pressure gradient in 
the stream direction as a body force in the simulation. 
Meanwhile, we need to ensure that the gas speed caused by the 

applied pressure gradient is small. The nondimensional force 
applied in the flow direction, β, is given by 

2xe
F

δ
β = ,             (12) 

where F=
ρ
p∇ , and β is a small constant, which is taken at the 

order of 10-7 in the simulations. 
 

 
Fig. 7: Nondimensional velocity profiles for planar Poiseuille 
flow at Knudsen numbers of 0.01, 0.05 and 0.1. Comparison of 
the LBE solution with the NSF slip flow solution. 
 

 
 

Fig. 8: Nondimensional temperature profiles for planar 
Poiseuille flow at Knudsen numbers of 0.01, 0.05 and 0.1. 
Comparison of the LBE solution with the NSF slip flow 
solution. 
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In Fig. 7, the velocity is nondimensionized by the averaged 
velocity, Umean. Slip motion at the wall is clearly observed and 
it increases as the Knudsen number becomes larger. In Fig.8, 
the nondimensional temperature is defined as in the Couette 
flows. There is also a temperature jump at the wall that 
becomes larger when the Knudsen number increases. Overall, 
the thermal LBE model and the NSF equations give close 
predictions, which may indicate the present thermal LBE model 
is valid in the slip flow regime.  

 

 
Fig. 9: Nondimensional deviatoric stress profiles for planar 
Poiseuille flow at a Knudsen number of 0.01. Comparison of 
the LBE solution with the NSF slip flow solution. 

 
Fig. 10: Nondimensional heat flux profiles for planar Poiseuille 
flow at Knudsen numbers of 0.01, 0.05 and 0.1. Comparison of 
the LBE solution with the NSF slip flow solution. 

 
The analysis of the deviatoric stresses can be found in Fig. 

9 where the stress has been nondimensionalized by µrefUmean/H. 
Again, compression work is negligible due to low speed so that 
the normal stresses can be ignored for all Knudsen numbers. 
Therefore, we only show the effect of the Knudsen number on 

shear stress in Fig. 9. The magnitude of the shear stress is found 
to decrease with increasing Knudsen number, which can be 
attributed to increasing slip motion. Agreement between 
solutions for the present thermal LBE equation and the NSF 
equations is good. 

A constant normal heat flux is predicted by both thermal 
LBE and the NSF equations, and agreements are reasonable. 
Fig.10 shows that normal heat flux is constant, as expected, but 
the magnitude decreases with increasing Knudsen number 
because of the increasing temperature jump. Interestingly, the 
normal heat fluxes for various Knudsen numbers are almost the 
same as the Couette flow, which further confirms that the 
normal heat flux is dominated by the temperature difference at 
the two plates and that viscous heating and compression work 
can be ignored. However, we found that the tangential heat flux 
is not zero in our LBE simulation despite a zero temperature 
gradient in the tangential direction. This interesting high-order 
rarefaction phenomenon was observed in directly solving the 
Boltzmann equation and NSF solver fails to capture this non-
equilibrium effect. 

The effect of various temperature differences on the 
velocity and temperature profiles can be seen in Fig. 7 and Fig. 
8. With a larger ∆T, the maximum velocity shifts to the lower 
plate and the temperature profile becomes more nonlinear. The 
reason is that physical properties like viscosity and thermal 
conductivity are strongly related to the temperature. 

 
CONCLUSIONS 

The present thermal LBE model has the advantages of a 
simple algorithm and numerical efficiency for low speed 
rarefied gas flows. The model results are in excellent agreement 
with the solution of the NSF equations in the slip flow regime. 
Moreover, the present model can capture high-order rarefaction 
effects in the heat flux where the NSF equations fail. It 
therefore offers an ideal numerical simulation tool for low 
speed rarefied gas system simulation as encountered in 
micro/nano devices. In the next step, we will investigate 
whether a thermal LBE model based on the present work can be 
applied to simulate low speed rarefied gas flow in the transition 
regime with Knudsen numbers up to the order of unity. 
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