Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Modelling thermal flow in a transition regime using a lattice Boltzmann approach

Zhang, Yonghao and Gu, X.J. and Barber, Robert W. and Emerson, David (2007) Modelling thermal flow in a transition regime using a lattice Boltzmann approach. EPL: A Letters Journal Exploring the Frontiers of Physics, 77 (3). 30003.1-30003.5. ISSN 0295-5075

PDF (strathprints006664.pdf)

Download (177kB) | Preview


Lattice Boltzmann models are already able to capture important rarefied flow phenomena, such as velocity-slip and temperature jump, provided the effects of the Knudsen layer are minimal. However, both conventional hydrodynamics, as exemplified by the Navier-Stokes-Fourier equations, and the lattice Boltzmann method fail to predict the nonlinear velocity and temperature variations in the Knudsen layer that have been observed in kinetic theory. In the present paper, we propose an extension to the lattice Boltzmann method that will enable the simulation of thermal flows in the transition regime where Knudsen layer effects are significant. A correction function is introduced that accounts for the reduction in the mean free path near a wall. This new approach is compared with direct simulation Monte Carlo data for Fourier flow and good qualitative agreement is obtained for Knudsen numbers up to 1.58.