Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Sample return from Mercury and other terrestrial planets using solar sail propulsion

Hughes, Gareth W. and Macdonald, M. and McInnes, Colin and Lyngvi, A. and Falkner, P. and Atzei, A. (2006) Sample return from Mercury and other terrestrial planets using solar sail propulsion. Journal of Spacecraft and Rockets, 43 (4). pp. 828-835. ISSN 0022-4650

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A conventional Mercury sample return mission requires significant launch mass due to the large AV required for the outbound and return trips and the large mass of a planetary lander and ascent vehicle. It is shown that solar sail spacecraft can be used to reduce lander mass allocation by delivering the lander to a low, thermally safe orbit close to the planetary terminator. In addition, the ascending node of the solar sail spacecraft parking orbit plane can be artificially forced to avoid out-of-plane maneuvers during ascent from the planetary surface. Propellant mass is not an issue for spacecraft with solar sails, and so a sample can be returned relatively easily without resorting to lengthy, multiple gravity assists. A 275-m2 solar sail with a sail assembly loading of 5.9 g/m2 is used to deliver a lander, cruise stage, and science payload to a forced sun-synchronous orbit at Mercury in 2.85 years. The lander acquires samples and conducts limited surface exploration. An ascent vehicle delivers a small cold-gas rendezvous vehicle containing the samples for transfer to the solar sail spacecraft. The solar sail spacecraft then spirals back to Earth in 1 year. The total mission launch mass is 2353 kg, launched using a Japanese H2 class launch vehicle, C3 = 0. Extensive launch date scans have revealed an optimal launch date in April 2014 with sample return to Earth 4.4 years later. Solar sailing reduces launch mass by 60% and trip time by 40%, relative to conventional mission concepts. In comparison, mission analysis has demonstrated that solar-sail-powered Mars and Venus sample returns appear to have only modest benefits in terms of reduced launch mass, at the expense of longer mission durations, than do conventional propulsion systems.