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Abstract. In order to capture critical near-wall phenomena in gas micro- and nanoflows
within conventional CFD codes, we present scaled Navier-Stokes-Fourier (NSF) constitu-
tive relations. Our scaling is mathematically equivalent to applying an ‘effective’ viscosity
to the original constitutive relations. An expression for this ‘effective’ transport coefficient
is obtained from the half-space Kramer’s flow problem. The advantage of our model over
the traditional NSF equations is that the non-equilibrium flow near to the wall (the mo-
mentum Knudsen layer) can be described. Its advantage over higher-order hydrodynamic
models for gas micro- and nanoflows is that the boundary conditions remain the same as
required for the traditional NSF equations, so modifications to current CFD codes (pro-
vided they are already capable of modelling slip at solid surfaces) would be minimal. As
an application example, we apply our model to the isothermal problem of a micro-sphere
moving through a gas: we show that our model gives excellent results in the Knudsen
number range Kn . 0.1 and acceptable results up to Kn ≈ 0.25. This is much better than
the traditional NSF model with non-scaled constitutive relations.

1 INTRODUCTION

Gas (helium, air etc.) flow in and around micro- and nanoscale devices is a good
application example of rarefied gas dynamics — even when the pressure of the gas is
close to atmospheric. Rarefied gas dynamics is the study of gas flows in which the aver-
age distance between consecutive collisions of gas molecules (the mean free path) is an
appreciable fraction of the typical spatial dimension of the flow device. The important
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parameter in rarefied gas dynamics is the ratio of these length scales, termed the Knudsen
number, Kn. While rarefied flows are not generally found in everyday engineering at the
macroscale, they are common in very high-speed aerodynamics, granular environmental
problems, aerosol reactors, micro- and nanofluidics, and the vacuum industry.

One critical difference between rarefied and macroscale (continuum-equilibrium) flows
is that the linear constitutive relations in the traditional Navier-Stokes-Fourier (NSF)
equations of fluid dynamics are not able to capture the nonlinear, non-equilibrium char-
acteristics of flow in the so-called Knudsen layer close to solid bounding surfaces [1, 2, 3].
The existence of a Knudsen layer affects the whole flow, and its influence grows as the
Knudsen number increases. Generally, when Kn & 0.1 the NSF equations cannot describe
rarefied gas flows well.

Recently, Lockerby, Reese and Gallis [4] proposed a simple macroscopic continuum
model in which a scaled constitutive relation is applied to the flow within the Knudsen
layer, which approaches the NSF constitutive relations outside of the Knudsen layer.
(The basic idea of applying scaled constitutive relations is similar to that behind the wall
function approach in turbulent macroscale flow modelling.) For an isothermal flow, a
physical transport coefficient (viscosity) and a scaled strain-rate are used in these scaled
constitutive relations. From the mathematical viewpoint, this scaled relation is equivalent
to applying an ‘effective’ viscosity with the original strain-rate in the constitutive relations.

(Note: a similar approach, but involving an ‘effective’ thermal conductivity and the
heat flux close to the wall, can be used as a constitutive model for the thermal Knudsen
layer in non-isothermal flows.)

However, it is important to note that:

1. this technique ensures the correct viscous stress is still maintained in the region
of the wall: it is only the relationship between this stress and the corresponding
near-wall strain-rate that is altered; and

2. the ‘effective’ viscosity does not have any physical meaning, and is only applied
within the scaled constitutive relations, not in other relations. For example, in the
definition of molecular mean free path, the boundary conditions and the Prandtl
number, the real physical viscosity and thermal conductivity need to be used.

One of the main and distinct advantages of this model is that (for an isothermal flow)
the corresponding boundary condition is the same as the velocity slip condition in the
traditional NSF model. Another advantage is that the coupled governing equations are
the same as the traditional NSF equations, so that modification of current CFD codes
is minimal compared with that required for, say, incorporating higher-order continuum
models for rarefied gas flows [2, 3]. This present paper is a generalization of the simple
model outlined briefly in the original technical note [4].
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2 GAS SLIP AND THE KNUDSEN LAYER

Gas velocity slip at solid bounding surfaces is one of the critical physical differences
between gas flows at the micro- and nanoscale, and continuum-equilibrium macroscale
flows. Roughly speaking, this phenomenon becomes important when Kn & 0.01. A
phenomenological boundary condition, for use with the NSF equations, has been available
for over a century, and affords a reasonable prediction of velocity slip up to Kn ≈ 0.1.
Assuming isothermal bounding surfaces, this ‘Maxwell boundary condition’ [5] relates the
velocity slip, Vs, to surface values of the shear stress, τ :

Vs = −2 − α

α
ζ
λ

µ
τ, (1)

where ζ is the velocity slip coefficient (usually equal to 1.0 in the application), µ is the
viscosity, α is the tangential momentum accommodation coefficient (which indicates the
ease with which momentum can be transferred to and from the wall), and λ is the gas
molecular mean free, here defined as:

λ = µ

√

π

2ρp
, (2)

where ρ is the gas density and p its pressure. When the NSF equations are used in conjuc-
tion with the boundary condition given by eq. (1) (and the equivalent boundary condition
for temperature jump due to Smoluchowski [6]) the solution is sometimes referred to as a
‘slip solution’.

In the region close to a surface (within a few λ) the flow is highly non-equilibrial and the
relationship between stress and strain is non-linear. This region is known as the Knudsen
layer. Evidently, the linear constitutive relations of the NSF equations are unable to
model the flow in this region accurately. The existence of the Knudsen layer can affect
the whole flow, and its relative influence increases with Knudsen number. For this reason,
when Kn & 0.1 the NSF equations cannot describe rarefied gas flows well, even if the
boundary condition given in eq. (1) is applied.

The importance of the Knudsen layer can be illustrated by the following example of
low-speed, low-Kn, isothermal planar Poiseuille flow. The velocity slip (assuming α = 1.0)
and Knudsen layer effects have, up until now, been usually accounted for within a NSF
solution by using ‘fictitious’ (sometimes called ‘macro’) slip boundary conditions. This
means the factor ζ in eq. (1) is assigned the value 1.146 [1]. This means the value of the
slip velocity, V ∗ in Fig. 1, is artificially increased; the resulting NSF solution is indicated
by the dashed line in Fig. 1. At low Knudsen numbers, the difference between the actual
velocity profile and the one generated by the NSF equations with this ‘fictitious’ velocity
slip at the boundaries is small.

This theory also assumes that the stress is constant through the Knudsen layer, which
for Poiseuille flow at Kn = 0.05 (based on channel half-height) is a fair, if not precise,
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approximation (the stress, in fact, varies ∼ 10% from its maximum value over the Knudsen
layer thickness of ∼ 2λ).

Using α = 1.0, the NSF prediction for the mass flow rate, m, in this Poiseuille flow is
easily calculated as [3]:

m = −2ρGh3

3µ
(1 + 3ζ Kn), (3)

where G is the applied pressure gradient, and h is half the height of the flow channel. For
Kn = 0.05 and using the ‘fictitious’ ζ = 1.146, the percentage increase in the mass flow
rate due to slip and Knudsen layer effects is therefore ∼ 17% [3].

However, the actual, or ‘micro’ slip (Vs in Fig. 1) can be obtained by using a coefficient
ζ =

√

2/π ≈ 0.8 [4]. By substituting this value into eq. (3) we can evaluate the contribu-
tion to the increased mass flow rate that is solely due to velocity slip. This contribution is
∼ 70% of the change in m. Therefore the remaining ∼ 30% must be due to the non-linear
structure of the Knudsen layer.

Figure 1: Schematics of Kramer’s problem (left) and the temperature jump problem (right): VW and TW

are the velocity and temperature of the wall, respectively; Vs and Tj are the velocity slip and temperature
jump at the wall; V ∗ and T ∗ are the amount of ‘fictitious’ slip velocity and temperature jump that would
be required to ensure that an NSF solution (indicated by the diagonal dashed line) provides an accurate
prediction beyond the Knudsen layer’s limit (which is roughly indicated by the vertical dashed line).

Physically, within the Knudsen layer a different strain rate is obtained for a given
stress, i.e. there is a different (and nonlinear) relationship between stress and strain-rate
within the Knudsen layer. However, the transport coefficients (viscosity and thermal
conductivity) are unaltered. While higher-order, nonlinear constitutive relations have
been proposed for modelling Knudsen layers, the additional boundary conditions required
for their solution are yet to be firmly established and, generally, this topic is still in its
infancy [2, 3].
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However, the model due to Lockerby et al. [4] introduces a scaling into the fluid’s
linear constitutive relations (that is equivalent to using an ‘effective’ viscosity) so as
to produce the actual strain-rate occurring in the Knudsen layer from a given stress.
This constitutive-relationship scaling does not generate an artificial stress variation in the
Knudsen layer; on the contrary, the modified constitutive relations ensure that the correct
stress is obtained from the nonlinear strain rate within the Knudsen layer.

It is also important to note that this effective viscosity does not have an independent
physical meaning; it should only be applied within the constitutive relations, and not in
other relations where the transport coefficients are needed. For example, in calculating
the boundary conditions given in eq. (1), the actual viscosity should be used.

While the basic principle of applying scaled constitutive relations is similar to that of
a wall function approach to turbulent flow modeling [7] — and this is the reason that the
name ‘wall function’ was ascribed to the model in [4] — the way in which Lockerby et al.
obtained their scaled constitutive relations, and the overall aim of their model, is quite
different from that of the wall function approach in turbulent flows.

Based on data from an extensive literature survey, in this present paper we describe
a more reliable and accurate scaling of the constitutive relation in the NSF momentum
equation outlined in [4]. While a similar process can be used to scale the constitutive
relations in the energy equation in order to model the thermal Knudsen layer, we do not
pursue this here for reasons of space (although we do cite the relevant literature).

Further, we identify a simple means to predict the impact of the accommodation coef-
ficient, α, on the form of the momentum Knudsen layer and, consequently, on our scaling.
Our scaling model is designed to be used in conjunction with the Maxwell boundary con-
dition, given in eq. (1), with the slip coefficient ζ = 0.8. For surfaces with high levels
of curvature there have been few detailed theoretical studies of the Knudsen layer. So,
for want of a more accurate alternative, we suggest using the conventional slip coefficient
value: ζ = 1.0.

3 THEORETICAL BASIS

Our near-wall scaling model is based on solutions from kinetic theory to a fundamental
half-space problem: ‘Kramer’s problem’ (which contains the momentum Knudsen layer).
As noted in the previous section, a similar analysis for the thermal Knudsen layer can
proceed from kinetic theory solutions to another half-space problem, the so-called ‘tem-
perature jump problem’; however, this will not be pursued here due to reasons of space.
Both problems have previously been studied in some detail [8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21]. Figure 1 shows schematic representations of the two half-space
problems; indicated are the actual velocity slip and temperature jump, and the region of
the Knudsen layer in each case. For our analysis we adopt a Cartesian coordinate system,
(x1, x2, x3), and examine the gas flow in the x1 > 0 half-space domain; a solid bounding
wall is in the plane x1 = 0.
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3.1 Kramer’s problem: the momentum Knudsen layer

In Kramer’s problem, a uniform shear stress generates monatomic gas flow over a
stationary planar wall. The flow is incompressible, isothermal, and in a direction parallel
to the planar wall (as shown in Fig. 1). For this configuration, flow velocity profiles, u(x̂1),
are available in the literature [8, 11, 12, 14, 16, 17] and are of the form:

u(x̂1) = k(x̂1 + β − S(x̂1)), k =
du

dx̂1

∣

∣

∣

∣

x̂1→∞

(4)

where x̂1 is the non-dimensional distance from the wall:

x̂1 =

√
π

2

x1

λ
, (5)

β is a dimensionless slip coefficient (not to be confused with ζ in eq. (1)), and S(x̂1) is
a dimensionless function that describes the spatial structure of the momentum Knudsen
layer. This latter correction function is positive for small x̂1 and tends to zero as x̂1 → ∞,
reflecting the fact that the linear NSF constitutive relations work well for the flow outside
of the Knudsen layer but not within it.

Here, we use the function S(x̂1) to obtain the effective viscosity required to produce
the appropriate scaling of the NSF constitutive relations. First, eq. (4) is differentiated
and rearranged to give:

du

dx̂1

∣

∣

∣

∣

x̂1→∞

=

(

1 − dS

dx̂1

)−1
du

dx̂1

. (6)

Given that the stress, τ , is constant throughout the half space, and that the NSF consti-
tutive relations are valid as x̂1 → ∞ (i.e. τ = −µdu/dx̂1|x̂1→∞), eq. (6) can be re-stated
in the following form:

τ = −
(

1 − dS

dx̂1

)−1

µ
du

dx̂1

, (7)

which describes the actual nonlinear relationship between stress and strain rate within
the Knudsen layer. This nonlinearity can be implemented within the linear constitutive
relations of the NSF equations by defining an ‘effective’ viscosity:

τ = −µeff

du

dx̂1

, where µeff =

(

1 − dS

dx̂1

)−1

µ. (8)

3.2 An approximate expression for S

In order to obtain an expression for our effective viscosity, µeff, given in eq. (8), a
functional form for S needs to be obtained. To the authors’ knowledge there are no
analytical expressions available, so here we adopt a curve-fitting approach to obtain an
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approximate expression for S. We assume, subject to later confirmation of its generality,
that ln(S) varies as a linear function of ln(1 + x̂1), so that:

S = C(1 + x̂1)
A, (9)

where A and C are the curve-fitting coefficients. (Note: In an early attempt to combine
simplicity with accuracy, we started off assuming that ln(S) varied linearly with x̂1, but
found that the fitted curves did not match the original data for S as well as the functional
dependence described here. We are sure that other functional dependencies could be
found that fit the available data as well, if not better. Indeed, if an analytical expression
for S becomes available in the future, we would prefer to use this expression in obtaining
the effective viscosity in our method.)

In order to obtain accurate values for the coefficients in eq. (9) we have reviewed a wide
range of literature relating to Kramer’s problem (and the temperature jump problem too)
[8, 9, 10, 11, 12, 13, 14, 15, 16]. There are some common elements in this body of
theoretical research. Most notably, in all cases the linearized Boltzmann equation and
Maxwell’s microscopic boundary condition are used. There is very little experimental
data yet available, and the Knudsen-layer problem has barely been touched on by the
computational molecular dynamics community [3, 4]. Nonetheless, the velocity profile
in Kramer’s problem, computed from kinetic theory in [8, 9, 10, 11, 12, 13, 14, 15, 16],
compares very well with the results of the few reliable experimental studies (see, e.g.,
[17]). Figure 2 shows different results from the literature for the form of S (with an
accommodation coefficient, α = 1.0); there is, generally, a very close agreement in the
form and magnitude of the Knudsen layer.

Figure 2: Typical variation of function S(x̂1, α = 1.0) in Kramer’s problem (with hard sphere molecules).
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The data in the literature show that for x̂1 ≥ 1.5, S is generally small in comparison
to the other two terms in the velocity profile, eq. (4). For the sake of simplicity in curve-
fitting, we therefore evaluate S in the restricted range 0 ≤ x̂1 ≤ 1.5. We then obtain the
following values for the fitting coefficients, with α = 1.0 for two different gas molecular
models:

Hard sphere: A = −2.719, C = 0.238, (10)

BGK: A = −2.025, C = 0.284.

(While some of the Kramer’s problem solutions we have cited assume the BGK molecular
model, we find that in practice the difference in coefficients between hard-sphere and BGK
molecules makes very little difference to the final results we report below for our scaled-
NSF model.) Figure 3 shows an example of our curve-fitted expression for S compared to
data from Ref. [8] for Kramer’s problem in a hard-sphere gas. As can be seen, the fit to
the theoretical data is very good, with the largest error occurring very close to the wall
(the maximum relative error of the expression for S is around 10%).

Figure 3: Function ln[S(x̂1, αm = 1.0)] for Kramer’s problem in [8], and its fitted curve.

3.3 Dependence on surface accommodation

Previous work has shown a strong dependence of the Knudsen layer on the surface
accommodation coefficients. In order to incorporate this within the current model in the
simplest way, we assume that the functional form of the Knudsen layer does not change
with α, but that the fitted coefficients are themselves functions of the accommodation
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coefficients, i.e. A = A(α) and C = C(α). On investigating this dependency with our
cited data from the literature, we find that C is almost a linear function of α (see Fig. 4):

C = Dα + E, (11)

and we then obtain the following values for the fitting coefficients:

Hard spheres: D = −0.293, E = 0.531, (12)

BGK: D = −0.328, E = 0.612.

We find, however, that the coefficient A is almost independent of the surface accommo-
dation. This implies that the form and extent (into the flow) of the Knudsen layer is
independent of the surface accommodation.

Figure 4: Coefficient C for Kramer’s problem (hard sphere molecules).

Substituting eq. (9) with eqs. (12), (11), (10), into eq. (8) provides the final expression
for the effective viscosity required to reproduce the Knudsen layer structure within a NSF
model,

µeff =
[

1 − A(Dα + E)(1 + x̂1)
A−1

]−1

µ, (13)

where the mean free path, λ, defined in eq. (2), is evaluated outside of the Knudsen layer.
As x̂1 becomes large (i.e. outside of the Knudsen layer), the effective viscosity tends to
the value of the actual viscosity, meaning that away from the wall the scaling does not
affect the solution in any way.

It is important to emphasise again that this effective viscosity does not generate ar-
tificial stresses in the Knudsen layer. On the contrary, this effective value ensures that
the actual stress is obtained from the actual strain rate that occurs within the Knudsen
layer.
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4 VELOCITY SLIP COEFFICIENT

As noted prviously, the slip coefficient ζ featuring in the Maxwell boundary condition,
eq. (1), is rarely set so that it predicts the actual velocity slip and temperature jump at a
gas-surface interface. Instead, it is set so that an amount of ‘fictitious’ slip is incorporated
in the prediction (this fictitious slip value is labelled V ∗ in Fig. 1). This ensures that the
NSF constitutive relations can at least provide a good prediction of the flow field outside
of the Knudsen layer. The diagonal dashed lines in Fig. 1 indicate the NSF solution that
is obtained when using fictitious slip and jump slip coefficients in eq. (1).

When using our constitutive-relation scaling, however, there is no need to incorporate
any artificial slip at the boundary; the actual slip boundary condition should be used. We
have obtained average values for the actual velocity slip coefficient (and the temperature
jump coefficient, too) from a number of different sources on Kramer’s problem and the
temperature jump problem [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. For the
actual velocity slip we find:

Hard spheres & BGK: ζ ≈ 0.8, (14)

which is in agreement with that presented in [4].
This value is for planar wall boundaries; for curved surfaces, especially if the curvature

of the surface is high compared to the mean free path, this velocity slip coefficient is
unlikely to be accurate. Unfortunately, only very limited work has been reported on the
extent to which the velocity slip and temperature jump coefficients depend on surface
curvature. This could form the basis of a useful future investigation in its own right,
but in the meantime the authors suggest using the standard Maxwell slip coefficients (i.e.
ζ = 1.0) for flows in and around highly curved geometries.

5 A TEST APPLICATION: RAREFIED GAS FLOW PAST A SPHERE

In order to test the generality, and consequent usefulness, of our scaled constitutive re-
lation, it needs to be applied to flow problems other than those that approximate Kramer’s
problem. As a first test, we have chosen to investigate rarefied gas flow around a sphere
(for an isothermal, creeping flow of a monatomic gas). The sphere is assumed to have
infinite thermal conductivity, and a uniform surface temperature which is that of the
free-stream gas flow. There is no condensation or evaporation in this problem (i.e. the
particle is non-volatile [22, 23]).

Previous relevant kinetic-theoretical research on this problem can be found in Refs. [23,
24, 25, 26, 27, 28, 29, 30, 31, 32]. In all cases the fundamental equation studied was the
linearised Boltzmann equation (or other linearised kinetic models) together with Maxwell’s
microscopic boundary condition; mostly, either the BGK model or hard sphere molecular
model were adopted.

Millikan’s experimental work [33] forms an extensive set of data for oil droplets in air,
which is a close approximation to the problem of a sphere in a moving rarefied gas. He
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reported data over a wide range of Knudsen numbers, and empirical equations to fit this
experimental data are given in Refs. [34, 35]. Almost all of the work reported in these
papers focuses on predicting or measuring the drag force as a function of Knudsen number
in the purely diffusive boundary situation, α = 1.0.

References [23, 24] report kinetic-theoretical predictions of the variation of drag force
with accommodation coefficient, α, for certain Knudsen numbers. Expressions for the
drag force as a function of Kn and α have appeared in: ref. [33], based on a moment
solution to the Boltzmann equation; ref. [36], from a thirteen moment analysis [35]; and
ref. [37], from the traditional NSF equations with velocity slip and temperature jump
boundary conditions.

From the point of view of CFD solutions, the problem can be straightforwardly set-
up and solved, along with our effective viscosity model, provided that it is possible to
calculate the distance from the surface of the sphere at any point in the flow. An efficient
numerical way of performing this distance calculation is reported in [38]. In addition,
in order to obtain the most accurate predictions of drag force (and other quantities) the
numerical grid must be refined close to the surface of the sphere. Other points relating to
the computational procedure are: the convergence criterion we apply is that the relative
difference in the drag force between two successive numerical iterations should be less than
10−10; as required physically, our CFD solution recovers the traditional NSF values for
velocity if we set µeff = µ; since the surface of the sphere is curved, and in our investigated
range of Kn (≤ 1.0) the degree of curvature is not small, and following our discussion
in a previous section above we apply the Maxwell slip coefficient, ζ = 1.0, for both the
traditional NSF equations and our model.

Figure 5 shows the variation of normalized drag force with Kn for α = 1.0. We see that
our model gives somewhat better results for this force than the traditional NSF equations
with non-scaled constitutive relations. Figures 6, 7 and 8 show the variation of normalized
drag force with α for Kn = 0.1, 0.25, and 0.5. Together, these show that:

• over a range of α and Kn, our model predicts drag force results that are closer to
independent kinetic-theoretical results than the traditional NSF equations predict;

• our model gives good agreement with kinetic-theoretical results for the drag up to
Kn = 0.1 (with an average relative error of only 1.5%), and acceptable agreement
up to Kn = 0.25 (with an average relative error of 6%);

• Goldberg’s expression from the 13 moment equations [35, 36] gives similar results to
the traditional NSF equations, which are not as close to kinetic-theoretical results
as the results from our model;

• for large Kn (& 0.5) none of the hydrodynamic models agrees well with kinetic
theory;
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• Phillips’ approximate expression [35] only works well for large α (i.e. ≈ 1.0) when
Kn . 0.1.

Figure 5: Normalized drag force variation with Kn for α = 1.0.

Figure 6: Normalized drag force variation with α for Kn = 0.1.
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Figure 7: Normalized drag force variation with α for Kn = 0.25.

Figure 8: Normalized drag force variation with α for Kn = 0.5.

6 CONCLUSIONS

Navier-Stokes-Fourier equations with scaled constitutive relations appropriate for isother-
mal rarefied gas flows have been proposed. This is mathematically equivalent to intro-
ducing an ‘effective’ viscosity in the original linear constitutive relations. A functional
expression for this ‘effective’ viscosity is posited, and coefficients in this model obtained
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from an ideal half-space flow problem: Kramer’s problem.
The advantages of our model are twofold: the flow in the Knudsen layer is described

much better than when using the traditional NSF equations; and the boundary conditions
remain the same as in the traditional NSF model (although the slip coefficient is changed)
so there is no need to develop any of the additional boundary conditions required by
higher-order hydrodynamic models for rarefied gas flows.

We applied our model to the problem of a spherical particle moving through a rarefied
monatomic gas, and obtained values for the drag force. For this particular problem, our
model gives much better results than the traditional NSF equations with non-scaled con-
stitutive relations; excellent results are obtained for flows with Kn . 0.1, and acceptable
results up to Kn ≈ 0.25.

We are investigating extending our model to non-isothermal cases, where a thermal
Knudsen layer is also present; we are adopting a methodology very similar to that de-
scribed here, i.e. using published kinetic-theoretical data on the half-space temperature-
jump problem to scale the temperature-gradient/heat-flux relationship. Further test cases,
including applying our model to, e.g., planar and cylindrical Couette flow, are also under
investigation.
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