Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A strategic study of energy efficient and hybrid energy system options for a multi-family building in Korea

Kim, Jae Min and Clarke, Joseph Andrew and Hong, Jun and Strachan, Paul and Hwang, I. and Li, Hongjun (2006) A strategic study of energy efficient and hybrid energy system options for a multi-family building in Korea. In: Eurosun Conference, 2006-06-26 - 2006-06-29.

[img]
Preview
PDF (strathprints006625.pdf)
strathprints006625.pdf

Download (635kB) | Preview

Abstract

This study is to identify performance of energy efficiency measures and to match low-carbon and renewable energy (RE) systems supplies to demands in the context of multi-family residential buildings in Korea. An approach to the evaluation of the hybrid energy systems was investigated, including consideration of heat and power demand profiles, energy system combinations, building design options and strategies for matching supply to demand. The approach is encapsulated within an integrated software environment. Building energy simulation technology was exploited to make virtual energy use data. Low-carbon and RE system modelling techniques were used to predict energy supply profiles. A series of demand/supply matching-based analyses were made to identify the effect of energy efficient demand measures (e.g. roof-top gardens, innovative underfloor heating system) and evaluate the capacity utilisation factor from the hybrid energy systems. On the basis of performance information obtained at the conceptual design stage, the design team can pinpoint the most energy efficient demand/supply combination, and consequently, maximise the impact of hybrid energy systems adoption.