Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Near Earth object modification using gravitational coupling

McInnes, C.R. (2007) Near Earth object modification using gravitational coupling. Journal of Guidance, Control and Dynamics, 30 (3). pp. 870-873. ISSN 1533-3884

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It has been well documented that the population of near Earth objects (NEO) poses a terrestrial impact hazard [1-4]. Although current efforts are focused on detecting and cataloging such objects, various schemes for hazard mitigation have been proposed and investigated in some detail [5-15]. Nuclear devices appear attractive for deflecting potentially hazardous NEOs [5], although serious political issues arise concerning the deployment of such devices in space [11]. To overcome such difficulties, a range of nonnuclear options have been proposed. Concepts include focusing solar radiation onto the target asteroid with a large collector and smaller steerable secondary mirror to generate a hot jet of exhaust gas [6,7] or coating the asteroid to alter its albedo, and hence modify the Yarkovsky induced acceleration [8]. Somewhat more conventional approaches center on the use of kinetic energy impacts from either prograde [12,13] or retrograde orbits [9,10], or the use of continuous low thrust to increase the predicted Earth miss distance of the NEO using large solar or nuclear electric vehicles.