Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Near Earth object modification using gravitational coupling

McInnes, C.R. (2007) Near Earth object modification using gravitational coupling. Journal of Guidance, Control and Dynamics, 30 (3). pp. 870-873. ISSN 0731-5090

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It has been well documented that the population of near Earth objects (NEO) poses a terrestrial impact hazard [1-4]. Although current efforts are focused on detecting and cataloging such objects, various schemes for hazard mitigation have been proposed and investigated in some detail [5-15]. Nuclear devices appear attractive for deflecting potentially hazardous NEOs [5], although serious political issues arise concerning the deployment of such devices in space [11]. To overcome such difficulties, a range of nonnuclear options have been proposed. Concepts include focusing solar radiation onto the target asteroid with a large collector and smaller steerable secondary mirror to generate a hot jet of exhaust gas [6,7] or coating the asteroid to alter its albedo, and hence modify the Yarkovsky induced acceleration [8]. Somewhat more conventional approaches center on the use of kinetic energy impacts from either prograde [12,13] or retrograde orbits [9,10], or the use of continuous low thrust to increase the predicted Earth miss distance of the NEO using large solar or nuclear electric vehicles.