Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Series of experiments for empirical validation of solar gain modelling in building energy simulation codes - Experimental setup, test cell characterization, specifications and uncertainty analysis

Manz, H. and Loutzenhiser, P.G. and Frank, T. and Strachan, Paul and Bundi, R. and Maxwell, George (2006) Series of experiments for empirical validation of solar gain modelling in building energy simulation codes - Experimental setup, test cell characterization, specifications and uncertainty analysis. Building and Environment, 41 (12). pp. 1784-1797. ISSN 0360-1323

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Empirical validation of building energy simulation codes is an important component in understanding the capacity and limitations of the software. Within the framework of Task 34/Annex 43 of the International Energy Agency (IEA), a series of experiments was performed in an outdoor test cell. The objective of these experiments was to provide a high-quality data set for code developers and modelers to validate their solar gain models for windows with and without shading devices. A description of the necessary specifications for modeling these experiments is provided in this paper, which includes information about the test site location, experimental setup, geometrical and thermophysical cell properties including estimated uncertainties. Computed overall thermal cell properties were confirmed by conducting a steady-state experiment without solar gains. A transient experiment, also without solar gains, and corresponding simulations from four different building energy simulation codes showed that the provided specifications result in accurate thermal cell modeling. A good foundation for the following experiments with solar gains was therefore accomplished.

Item type: Article
ID code: 6575
Keywords: building energy simulation, empirical validation, test cell specification, energy systems, construction engineering, structural engineering, Mechanical engineering and machinery, Building construction, Building and Construction, Civil and Structural Engineering, Environmental Engineering, Geography, Planning and Development
Subjects: Technology > Mechanical engineering and machinery
Technology > Building construction
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Faculty of Engineering > Civil and Environmental Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 07 Aug 2008
    Last modified: 12 Jun 2014 10:12
    URI: http://strathprints.strath.ac.uk/id/eprint/6575

    Actions (login required)

    View Item