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Abstract 

When applying computer simulation tools in practice uncertainties abound, for example 

in material properties and boundary conditions.  To facilitate the quantification of the 

effects of uncertainties, the differential, factorial and Monte Carlo methods have been 

implemented within a simulation tool, ESP-r.  These methods require multiple 

simulations to extract statistical measures of model uncertainty. 

An alternative approach is to embed uncertainty considerations within the simulation 

tool's algorithms.  The principle advantages of this approach are that the uncertainty is 

quantified at all times and therefore requires only a single simulation.  Coupled with this, 

it is possible to take control action based on the prevailing effects of uncertainties. 

This paper details the mathematical techniques required to integrate uncertainty 

considerations within the energy conservation equations when applied to the simulation 

of buildings.  A comparison is made between the use of this novel approach and 

traditional mechanisms of assessing uncertainty.   
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1.  Introduction 

The quantification of uncertainty in the design process is necessary when applying 

simulation in practice to assess the risk in design decision making.  This is due to the 

multitude of unknowns in a design, particularly at early design stages where simulation 

can be most effective.  The ESP-r system has been equipped with standard methods to 

quantify the effects of uncertainty [1].  The simulation engine is unaltered by these 

methods and is effectively treated as a black box, i.e. they are external to the core 

equation sets.  Statistical inferences are then used to quantify the effects of uncertainties.  

However, to achieve this, these external methods rely on multiple simulations of the 

deliberately perturbed data model.  Furthermore, to calculate individual effects and the 

overall effect of uncertainty necessitates using different analysis methods: for example 

differential, factorial and Monte Carlo techniques.  Therefore, to undertake a full analysis 
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of the effects of uncertainty using external methods requires the considerable effort of 

undertaking multiple analyses, each of which requires multiple simulations. 

This paper proposes a more efficient approach whereby the uncertainty information is 

embedded within, and used throughout, the simulation process.  This mechanism requires 

only a single simulation to quantify the effects of the uncertainties and would allow 

control of the simulation based on the prevailing effects of uncertainty.  Methods within 

this approach have been classified as internal as they alter the core simulation engine.  

The new method is explained and its performance compared to that of the external 

methods. 

 

2.  Conservation equations 

To integrate uncertainty considerations into a simulation engine requires the alteration of 

the underlying algorithms.  As a prerequisite to describing the mathematics of the internal 

methods, the finite volume conservation equations are summarised. 

Each technical domain in a building simulation is described by a set of conservation 

equations, e.g. for energy, mass and momentum, with support equations corresponding to 

source terms.  This paper focuses on the thermal domain where design decisions have a 

major impact on energy use. 

2.1 Thermal modelling 

The finite volume approach to building modelling requires the identification of typical 

control volume (or node) types [2].  Each of these types represents the energy transfer 

mechanisms occurring at the corresponding node.  In a building there are three principal 

node types: 

1) solid; 

2) surface (solid/fluid boundaries); 

3) fluid. 

There are also special cases of these types, e.g. solid nodes can be homogeneous or non-

homogeneous, opaque or transparent.  However, the energy balances remain essentially 

the same for each node type.  Figure 1 summarises the various heat and mass transfer 

processes that may be included within the energy conservation equations corresponding 

to the above three node types. 

To illustrate the uncertainty embedding process, this paper focuses on the energy balance 

for the solid node type. 



 

Figure 1.  Building node types and heat flows. 

 

 

 

Figure 2.  One dimensional heat transfer mechanisms at a solid node. 

 



2.2 Energy balance for solid nodes 

The available mechanisms for heat transfer in a solid node are shown in figure 2.  If the 

solid construction is opaque then the solar flux will be zero.  The energy balance can be 

stated as: 
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where ȡ is the density (kg/m
3
), C the heat capacity (J/kgK), V the volume of the node 

(m
3
), ș the temperature (K), t time (s), k the thermal conductivity (W/mK), A the area 

normal to the direction of heat flow (m
2
), x the distance between nodes (m) and q* is an 

additional heat flux (W) where * is the type of flux
1
.  Each of the conductive flow paths 

(i) is treated separately as there may be different material properties in each flow 

direction.  For heat flow in one dimension the total number of conductive flow paths is 

two.   

Equation 1 is solved numerically by representing the partial derivatives by a truncated 

Taylor series for the current time row, t, and the future time row, t+1.  The expression for 

the current time row is explicit and conditionally stable, whereas the expression for the 

future time row is implicit and unconditionally stable.  Combining these expressions 

gives rise to the well-known and unconditionally stable Crank-Nicolson difference 

scheme: 
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This is the general form of the equation for a solid node, where V is the node volume.  

Equations for other node types are also necessary for the full building energy 

conservation equation set, for example see [2].  To complete the description of the 

building the nodal equations are then formed into a set of simultaneous equations:  

tt θθ BA =+1 , 

where the coefficients of A correspond to the future time row and the coefficients of B 

are for the present time row.  This set of simultaneous equations must now be solved for 

each simulation time step.   

                                                 
1
 qsolar is the fraction of the solar flux absorbed at this node, which is a function of the 

solar transmissivity of the surrounding layers and any shading of the construction. 



The following sections describe arithmetical models that can be applied to this system of 

equations to enable the integrated quantification of uncertainty. 

 

3 Integrated methods 

These methods are based on interval or range arithmetic [3,4].  The most basic method is 

interval arithmetic, which in its general form is fuzzy arithmetic.  Another method in this 

class is affine arithmetic, a linear equation whose terms are interval numbers.  The 

interval and affine approaches are described. 

3.1 Interval Numbers 

An interval number, x, is defined as a range of values, all equally probable, with a lower 

bound defined as x  and an upper bound defined as x .  A specific element of x is defined 

as x~ , or mathematically, 

[ ] { }xxxxxxx ≤≤ℜ∈=≡ ~|~: . 

3.1.1 Binary functions 

The binary operators, ż:= {+,-,*,/} can be applied to intervals where the largest interval 

resulting from the binary operation is to be found: 

{ }yyxxyxyx ∈∈= ~,~|~~: oo   (3) 

for all x, y defined in the set of real interval numbers.  This restricts the division function 

to exclude any interval where y∈0 .  Representing the interval numbers x and y as 

[ ]xxx = and [ ]yyy = , equation 3 can be expanded as follows 

{ }yxyxyxyxyx ooooo ,,,: ⊗=  

where  is a function describing the set containing the four calculated values.  It is 

possible to calculate the end points of 

⊗
⊗  directly in most cases.  For addition and 

subtraction see equations 4, for multiplication see table 1, and for division see table 2. 
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Table 1.  Interval multiplication (xy). 

 0≥y  y∈0  0≤y  

0≥x  [ ]yxyx  [ ]yxyx  [ ]yxyx  

x∈0  [ ]yxyx  ( ) ( )[ ]yxyxyxyx ,max,min [ ]yxyx  

0≤x  [ ]yxyx  [ ]yxyx  [ ]yxyx  

 

Table 2.  Interval division (x/y). 

 0>y  0<y  

0≥x  [ ]yxyx //  [ ]yxyx //  

x∈0  [ ]yxyx //  [ ]yxyx //  

0≤x  [ ]yxyx //  [ ]yxyx //  

 

 

3.2 Affine arithmetic 

The affine model is a linear transformation of the uncertain quantity where the 

uncertainty associated with the data is held as a separate token (e.g. π  could be 

represented as 15.05.3or  43 επ +≤≤ , where 1ε  is the first uncertainty token and 

[ 111 −= ]ε ); each value of the number is equally likely between the limits of the range 

as in interval arithmetic [5].  Again the underlying arithmetical operations have to be 

redefined. 

3.2.1 Affine Numbers 

An affine number, , is defined as a range of values, all equally probable, via a first-

degree polynomial.  A specific element of  is defined as 

x̂

x̂ x~ , or mathematically 
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The terms  for  are uncertainty coefficients (e.g. if ix 1≥i x~  represented conductivity 

then  would be the average conductivity and  for  would be the uncertainty due 0x ix 1≥i



to temperature, moisture content etc) and the iε  terms are defined as the interval [ ].  
Each 

11−

iε  can thus assume any value between -1 and 1, the overall uncertainty in x being 

the linear combination of these uncertainties.   

Each  represents an independent source of uncertainty, either inherently associated 

with the data or as a result of a calculation, e.g. round-off error.  Clearly this 

representation will result in more complicated arithmetic than ordinary interval 

arithmetic. 

ix

The total uncertainty in an affine number is the sum of the uncertainty tokens, ∑ =

N

i ix
1

, 

and the effect of the individual sources of uncertainty is the magnitude of each 

uncertainty token, . ix

3.2.2 Affine operations 

An affine operation is an operation that can be expanded into an affine combination of 

the uncertainty tokens: 
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where N is the greatest number of uncertainty tokens in x and y.  Also note that it is not 

necessary for all uncertainty tokens to be defined.  Three instances of the above are 

addition, subtraction and multiplication by a constant; for example addition: 
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Note that the uncertainty tokens can cancel themselves out, e.g. xyyx ˆˆ)ˆˆ( =+− , which 

was not the case for interval arithmetic.  This is useful for numerical techniques and 

equation sets, for example equation 2. 

3.2.3 Non-affine operations 

A non-affine operation is a function that cannot be expressed as affine combinations of 

the uncertainty tokens, e.g. multiplication of two affine numbers results in a series of 

quadratic terms.  The process to follow is to map the solution to an affine number; thus 

the series of quadratic terms becomes a new uncertainty token: 

1
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Note the inclusion of the new uncertainty token (cf. equation 5).  This new uncertainty 

token is now defined to be independent of all of the other uncertainty tokens: this is 

clearly not the case so the evaluation of the non affine operation should aim to produce 

the best solution possible in terms of minimizing this new term. 



3.2.4 Multiplication of affine numbers 

The multiplication of two affine numbers results in a quadratic term: 

.)(

ˆˆ

111

0000

1

0

1

0

⎟
⎠

⎞
⎜
⎝

⎛
⋅⎟

⎠

⎞
⎜
⎝

⎛
+++⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟

⎠

⎞
⎜
⎝

⎛
+=⋅

∑∑∑

∑∑

===

==

N

k

kk

N

k

kkk

N

k

kk

N

j

jj

N

i

ii

yxxyyxyx

yyxxyx

εεε

εε
 

The quadratic term: 
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is approximated.  The best approximation [5] is a constant function of the maximum and 

minimum values of the quadratic.  If 
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thus the affine approximation of multiplication becomes 
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Due to the difficulty of calculating the bounds of the quadratic term, it is usually 

estimated as [5] 
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The resulting affine approximation of multiplication becomes 
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Division is achieved by using a min-range approximation to calculating the reciprocal of 

the devisor and then multiplying the result as described above.  This method produces 

two new uncertainty tokens, which are uncorrelated to the existing terms as described 

elsewhere [5]. 

 



3.3 Implementation of internal methods 

The internal methods require only a single simulation to quantify the individual and 

overall effects.  It was found when forming the energy balance equation set, that 

correlations between the source of uncertainty and the equation terms should be 

maintained.  This is necessary so that uncertain parameters have the same value when 

used in different terms in the equation set.  For example, the uncertainty in conduction 

into and out of a homogeneous control volume will be correlated because the uncertainty 

is related to the material's properties. 

Note that conductivity appears in four terms in equation 2.  Only affine arithmetic 

accounts for these correlations.  To achieve this, uncertainty considerations are embodied 

within the underlying conservation equations using affine numbers.  Each affine number 

is formed from the mean value of the parameter with the individual uncertainties defined 

as separate terms.  An interval number represents each uncertainty term, and affine 

numbers represent the resulting predictions (i.e. the state variables). 

Recall the general equation for transient conduction at a solid node (equation 2).  This 

equation is now extended to include uncertainties through the use of affine arithmetic.  

The fundamental energy balance for the node is unchanged since no new energy flow 

paths are created.  However, the physical properties affecting the energy transfer 

mechanisms are now functions of their inherent uncertainties. 

Recalling the definition of an affine number, the representation of an uncertain 

conductivity, for example, at node i is given by: 
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where  is the average value of conductivity and 0,ik jjik ε,  represents the variation in 

conductivity due to each of N sources of uncertainty.  Likewise, all other terms in 

equation 2 can be represented in their affine forms.  The length of time step, tδ , is 

imposed on the solution process by the user and as such has no associated uncertainty.  

All of the remaining parameters are functions of the building being modelled:  

• ȡ, C and k are properties of the materials and are susceptible to measurement 

errors and uncertainties due to moisture content etc; 

• įx is the thickness of the element and is subject to measurement errors and 

construction uncertainties (likewise the volume, V, of the node); and 

• the various fluxes are also uncertain, e.g. plant losses might be less than or greater 

than expected, and solar gain will reduce over time due to the accumulation of a 

dirt film on the glazing.  The magnitude of these uncertainties will be calculated 

elsewhere, e.g. during the calculation of the solar flux absorbed/transmitted 

by/through the glazing. 

As a result of these uncertainties, the temperature of the node will itself be uncertain.  

The end result is that equation 2 becomes equation 6. 
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  (6) 

As can be seen in equation 6 affine numbers now represent the uncertain parameters.  The 

state variable, θ , is likewise represented in an affine form.  In this manner the uncertainty 

in the parameters will be accounted for during a simulation and will be quantified in the 

state variables.   

This is the general conservation equation for a solid node with uncertainties included.  It 

should be noted that for any given set of values for the uncertainty tokens ( jε ), equation 

6 reduces to equation 2.  Recall that the numbering of uncertainty tokens is consistent 

throughout the model and therefore uncertainty tokens for all properties can be related.  

For example, if density and specific heat capacity have a magnitude associated with 



uncertainty token j then both properties are implicitly defined as being correlated.  If an 

uncertainty is not applicable to a parameter then its magnitude is zero. 

 

4 Verification of the affine model 

Two simulation programs were used to verify the affine approach to uncertainty 

modelling: 

1) one using the original ESP-r program; and 

2) the other embodying an affine representation. 

For both simulation programs the model used was simulated with and without 

uncertainties applied.  Recall that the affine approach only requires a single simulation 

for a given set of uncertainties compared with the multiple simulations required by 

external methods for the same set of uncertainties. 

4.1 CEN standard conduction tests 

These tests require the prediction of internal air temperatures inside a 1m
3
 zone at several 

time intervals after a step change has been made to the ambient air temperature [6].  

Three different constructions were tested here.  In each case all surfaces in the zone were 

given the same construction.  The material properties used for each case are shown in 

table 3.  Each surface in the zone has identical boundary conditions.  For the tests each 

case is subjected to a step change of 10°C in ambient air temperature as depicted in figure 

3 and the change in internal air temperature is recorded. 

 

Table 3.  Constructions used in tests. 

Material Conductivity

k (W/mK) 

Density 

ȡ (kg/m
3
) 

Specific heat 

capacity 

C (kJ/kgK) 

Layer 

thickness 

s (m) 

Render 1.20 2000 1.0 0.20 

Insulation 0.04 50 1.0 0.10 

Paper 0.14 800 1.5 0.005 

 

Figure 3.  Varition of ambient air temperature 



4.2 Results without uncertainties 

The initial simulations were run without uncertainties defined.  This simple inter-model 

comparison was used to verify the affine model.  As can be seen in table 4, the affine 

model compares favourably with the ESP-r solution without uncertainties
2
. 

 

Table 4.  Solution without uncertainty from simulations with 10 minute time step. 

Case 1 Case 2 Case3 Time 

(hours) 
Affine ESP-r į Affine ESP-r į Affine ESP-r į 

1 20.01 20.00 0.01 20.87 20.87 0.00 26.52 26.49  0.03 

2 20.08 20.04 0.04 23.86 24.42 -0.56 29.93 29.90 0.03 

6 21.26 21.26 0.00 29.08 29.47 -0.39 30.00 29.95 0.05 

12 23.41 23.44 -0.03 29.95 29.98 -0.03 30.00 29.95 0.05 

24 26.34 26.35 -0.01 30.00 30.00 0.00 30.00 29.96 0.04 

120 29.97 29.96 0.01 30.00 30.00 0.00 30.00 29.96 0.04 

 

4.3 Results with uncertainties 

A systematic test of the effects of including uncertainties was undertaken.  A factorial 

design provides the best test methodology as all possible combinations of the test states 

are analysed.  Such a process involves many tests for all possible parameters and their 

combinations.  The following test sequence was devised. 

1) Test each parameter individually at uncertainties of 1%, 5% and 10%. 

2) Test combinations of two parameters at the same uncertainty levels. 

3) Continue with more parameters being included. 

There are only three parameters that are available for assigning uncertainties in the base 

case model: conductivity, heat capacity (either the density or specific heat capacity) and 

thickness.  In total 64 simulations were executed and analysed.  This includes the 

simulation with zero uncertainty in all parameters: the remaining 63 simulations are 

reported elsewhere [7]. 

                                                 
2
 The large differences reported for case 2 are probably due to the implementation of 

convective boundary conditions.  The low capacity and thermal conductivity of this case 

will exacerbate any differences in modelling assumptions/implementation of the 

convective exchanges, to which this case is particularly sensitive to. 

 



 

Figure 4.  Examples of partially converged solution for a type 2 simulation. 

 

The results may be summarised as follows. 

1) Fully converged: the individual uncertainty tokens and the sum of the 

uncertainty tokens tend to zero as the simulation time tends to infinity, for 

example see cases 1 and 2 in table 5. 

2) Partially converged: the individual uncertainty tokens converge but the sum of 

the tokens does not, i.e. individual effects are quantified but the overall 

uncertainty is not, for example see figure 4 and case 3 in table 5. 

3) Divergent solutions: neither the individual uncertainty tokens nor the sum of 

the tokens converge, i.e. both individual and overall effects are not quantified. 

The reasons for non-convergence are mainly due to non-affine operations, which 

introduce new uncertainty terms that are uncorrelated to existing terms.  Methods to 

minimise the size of these new terms are currently being sought.  A typical example from 

the fully converged category is now discussed and compared with results from 

appropriate external methods. 

 



 

Figure 5.  Air temperature results for case 1. 

 

Table 5.  Affine solution for conductivity uncertainty of 1%. 

Case 1 Case 2 Case 3 Time 

(urs) 

0θ  conθ  ∑ iθ  ∑ iθ  0θ  conθ  ∑ iθ  ∑ iθ  0θ  conθ  ∑ iθ  ∑ iθ  

1 20.0064 0.0001 0.0001 0.0001 20.8679 0.0116 0.0117 0.0118 26.5238 0.0033 0.0060 0.0076 

2 20.0802 0.0012 0.0013 0.0013 23.8550 0.0357 0.0366 0.0370 29.9273 0.0003 0.0058 0.0086 

6 21.2555 0.0113 0.0115 0.0116 29.0811 0.0217 0.0239 0.0247 30.0000 0.0000 0.0084 0.0128 

12 23.4086 0.0171 0.0180 0.0184 29.9473 0.0026 0.0033 0.0035 30.0000 0.0000 0.0395 0.0610 

24 26.3384 0.0170 0.0188 0.0195 29.9998 0.0000 0.0000 0.0000 - - - - 

120 29.9669 0.0007 0.0013 0.0016 - - - - - - - - 



4.4 Discussion 

The results from a fully converged solution are presented in table 5, cases 1 and 2.  As 

can be seen for case 1 the uncertainty token İcon and the sum of the uncertainty tokens 

(these include the results of non affine operations) tends to zero as time tends to infinity.  

These results are commensurate with expectations of the behaviour of the physical 

system.  If the conductivity were to increase by 1% then İcon = 1 and the resulting air 

temperatures would then be ș0 + İcon at all times.  This is a sensible result.  The value of 

İcon represents the uncertainty in temperature due to the first order effects of the 

uncertainty in conductivity.  The total uncertainty includes the effects due to non-affine 

operations.  As expected, the total uncertainty is greater than the first order effects.  It 

should also be observed that the integrity of the physical system is maintained, i.e. no 

temperatures greater than 30°C are possible for all values of İi and the uncertainty in 

temperature reduces to zero as the system reaches steady state.  Finally, if the uncertainty 

in conductivity was zero (i.e. İcon = 0) then the same results as the simulation without 

uncertainty are achieved (table 4).   

Differential and Monte Carlo analyses were undertaken to enable a comparison with the 

above results (these methods are already integrated within ESP-r and have been described 

previously [1]).  Table 6 shows the results of these simulations: the  and  values 

relate to the differential analysis and the 

+δθ −δθ
σ  values relate to the Monte Carlo analysis; as 

expected the two analysis methods produce effectively the same results.  As can be seen 

in figure 5 the total affine error (∑ iθ ) is of the same magnitude as the standard 

deviation predicted by an 80 run Monte Carlo analysis.  The individual effect of the 

uncertainty in conductivity ( conθ  in table 5) is also similar to the variation predicted by 

the differential analysis (  and  in table 6).  From these data it can be concluded 

that the affine solution shows good agreement with the traditional external methods. 

+δθ −δθ

 

Table 6.  External method solutions for conductivity uncertainty of 1%. 

Case 1 Time 

(hours) 
0θ  +δθ  −δθ  σ  

1 19.9977 0.0003 0.0000 0.0002 

2 20.0370 0.0013 -0.0012 0.0015 

6 21.2602 0.0127 -0.0125 0.0125 

12 23.4396 0.0173 -0.0173 0.0170 

24 26.3474 0.0169 -0.0170 0.0165 

120 29.9623 0.0011 -0.0007 0.0011 

 



4.5 Stability of affine model 

Due to the requirement of minimal affine computations of the solution process the 

underlying assumption of the above that the Crank Nicolson formulation provides an 

optimal approach was reviewed.  The equations were recast in a fully implicit 

formulation and the simulations re-run.  The ability to reach a bounded solution was 

ascertained over a range of simulation time step lengths for both formulations (Crank-

Nicolson and implicit).  Tables 7 and 8 show the analysed cases.  As can be seen the 

majority of analysed cases are of the partially converged type.  This would indicate that 

with improved handling of the equations these errors might be reduced (for example it is 

possible to iteratively improve the solution under interval arithmetic [4], but as yet not for 

affine arithmetic).  This is an area where further research would be beneficial.  Secondly, 

it can be seen that the Crank Nicolson method provides better results in the majority of 

cases.  This is particularly evident for the longer time step simulations, where the explicit 

formulation is unstable and therefore cannot be used to produce a solution.  This is of 

particular note in buildings as often the structure has a wide range of response times, 

therefore a solver needs to be robust over a range of time step lengths if all elements of 

the structure are to be simulated at the same frequency (a common approach in 

contemporary software).  An alternate method would be to solve each element of the 

structure separately at as close to an optimal frequency as possible.  Examining the data 

in tables 7 and 8 shows that there is probably little merit in the latter method, although 

more research may enable a firmer conclusion to be drawn. 

 

Table 7.  Comparison of solver characteristics – number of fully converged cases. 

Time step length (minutes) Equation set-up Case 

Default 0.2 1 10 30 60 

1 104.2 A 7 5 5 4 

2 4.3 A 12 B B B 

Fully explicit 

3 0.4 2 B B B B 

1 278 A A 3 3 2 

2 52 A 7 8 8 8 

Crank Nicolson 

3 0.9 2 2 0 0 0 

Notes:  

A – no results due to too many uncertainty tokens. 

B – no results as time step too long. 

 



 

Table 8.  Comparison of solver characteristics - partially converged cases. 

Time step length (minutes) Equation set-up Case 

Default 0.2 1 10 30 60 

1 104.2 A 58 58 58 59 

2 4.3 A 51 B B B 

Fully explicit 

3 0.4 61 B B B B 

1 278 A A 60 55 50 

2 52 A 56 49 41 39 

Crank Nicolson 

3 0.9 40 31 29 29 29 

Notes:  

A – no results due to too many uncertainty tokens. 

B – no results as time step too long. 

 

 

5 Conclusions 

The inclusive quantification of uncertainty in energy conservation equations has been 

demonstrated and the merits of this approach described.  These include not only a 

reduction in simulation effort but potentially allow control of algorithm choice during 

simulation to minimize the effects of uncertainty on the output. 

The implementation requires significant alterations to the structure of a simulation code.  

Although the ESP-r system was used in this study, the equations formed are generally 

applicable to any control volume conservation set, e.g. for mass and momentum as 

encountered in air flow simulation.  By knowing the effects of uncertainty at all times in 

a simulation process, this information can be passed from one domain to another, i.e. the 

quantification of uncertainty would become fully integrated within the calculation 

procedure. 

The method as described represents the initial implementation of a promising technique.  

The affine approach performs well when compared with existing external techniques.  

However, the method could be made more robust by several mechanisms.  Further 

improvements to the affine calculations could be made with respect to maintaining 

correlations between sources of uncertainty.  For example, matrix multiplication is 

calculated on a term-by-term basis and will introduce several (one for each 

multiplication) new uncertainty terms that are uncorrelated to all other uncertainty terms.  



The linear nature of the model could also be examined, potentially expanding the model 

to a quadratic or cubic representation.  Another avenue for investigation would be the 

representation of the uncertainty tokens by fuzzy numbers rather than interval numbers.  

The implementation of these tasks is non-trivial but if achieved, would further improve 

this useful assessment technique. 
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