Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Comparing control strategies using experimental and simulation results: Methodology and application to heating control of passive solar buildings

Kummert, M. and Andre, P. and Argiriou, A.A. (2006) Comparing control strategies using experimental and simulation results: Methodology and application to heating control of passive solar buildings. HVAC and R Research, 12 (3a). pp. 715-737. ISSN 1078-9669

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Passive solar buildings combine high solar gains with a large thermal mass (or heat capacity). The problem of heating control in such buildings - or in modern, well-insulated buildings with high internal and/or solar gains - is characterized by a need of anticipation, which is illustrated in Figure 1. The figure shows that if there is no cooling plant in the building, overheating can occur during a sunny afternoon even though heating was necessary in the morning. In this case, when overheating occurs, it is too late to take a control decision for the heating plant: the heat stored in the building structure cannot be removed. If a cooling plant were present, the temperature could be maintained in the comfort zone in the afternoon, but this would increase the electricity load during on-peak hours. If afternoon overheating is anticipated, it is possible to reduce heating in the morning, saving heating energy and improving thermal comfort (and reduce cooling cost) at the same time.