Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Micro-abrasion resistance of thermochemically treated steels in aqueous solutions: Mechanisms, maps, materials selection

Mathew, M.T. and Matijevic, B. and Stack, Margaret and Rocha, L.A. and Ariza, E. (2008) Micro-abrasion resistance of thermochemically treated steels in aqueous solutions: Mechanisms, maps, materials selection. Tribology International, 41 (2). pp. 141-149. ISSN 0301-679X

[img]
Preview
PDF (Stack_MM_-_strathprints_-_Micro-abrasion_resistance_of_thermochemically_treated_steels_in_aqueous_solutions_-_mechanisms_maps_materials_selection_4_Dec_09.pdf)
Stack_MM_-_strathprints_-_Micro-abrasion_resistance_of_thermochemically_treated_steels_in_aqueous_solutions_-_mechanisms_maps_materials_selection_4_Dec_09.pdf

Download (130kB) | Preview

Abstract

The area of micro-abrasion is an interesting and relatively recent area in tribo-testing methodologies, where small particles of less than 10 μm are employed between interacting surfaces. It is topical for a number of reasons; its direct relation to the mechanisms of the wear process in bio-tribological applications, ease in conducting tests and the good repeatability of the test results. It has widespread applications in conditions used in the space and offshore industries to bio-engineering for artificial joints and implants. There have been many recent studies on the micro-abrasion performance of materials, ranging from work basic metals to nano-structured coatings. However, no significant work is reported on the micro-abrasion resistance of thermochemically treated steels. Hence, this paper looks at the performance of two thermochemically treated steels, Tenifer bath nitride stainless steel (T-SS) and vanadized carbon steel (V-CS) in such conditions with reference to the stainless steel (SS) by varying the applied load and sliding distance. The results indicated that T-SS demonstrates exceptionally poor resistance to micro-abrasion. It was observed that the heat treatment process and properties of the hardened layer (hardness and thickness) are extremely important in determining the micro-abrasion resistance of such steels. Finally, the results were used to develop micro-abrasion mechanism and wastage maps, which can be used to optimize the surface treated materials for micro-abrasion resistance.