Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Mercury sample return missions using solar sail propulsion

Hughes, Gareth W. and McInnes, Colin (2002) Mercury sample return missions using solar sail propulsion. In: Proceedings of the 53rd Astronautical Federation Congress. AIAA.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The use of solar sail propulsion is investigated for both Mercury orbiter (MO) and Mercury sample return missions (MeSR). It will be demonstrated that solar sail propulsion can significantly reduce launch mass and enhance payload mass fractions for MO missions, while MeSR missions are enabled, again with a relatively low launch mass. Previous investigations of MeSR type missions using solar electric propulsion have identified a requirement for an Ariane V launcher to deliver a lander and sample return vehicle. The analysis presented in this paper demonstrates that, in principle, a MeSR mission can be enabled using a single Soyuz-Fregat launch vehicle, leading to significant reductions in launch mass and mission costs. Similarly, it will be demonstrated that the full payload of the ESA Bepi Colombo orbiter mission can be delivered to Mercury using a Soyuz-Fregat launch vehicle, rather than Ariane V, again leading to a reduction in mission costs.