Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The orbital siphon : A new space elevator concept

McInnes, C.R. and Davis, Chris (2006) The orbital siphon : A new space elevator concept. JBIS, Journal of the British Interplanetary Society, 59 (10). pp. 368-374. ISSN 0007-084X

[img]
Preview
PDF
Siphon_JBIS_final_1_.pdf - Preprint

Download (167kB) | Preview

Abstract

A new concept for propellantless payload transfer from the surface of the Earth to Earth escape is presented. Firstly, a simple model of a payload ascending or descending a conventional space elevator is developed to explore the underlying dynamics of the problem. It shown that an unconstrained payload at rest on a space elevator at synchronous radius is in an unstable equilibrium, and that this instability can be used to motivate the development of a new concept for payload transfer. It will be shown that a chain of connected payloads stretching from the surface of the Earth to beyond synchronous radius can be assembled which will lift new payloads at the bottom of the chain, while releasing payloads from the top of the chain. The complete system therefore acts as an 'orbital siphon', transporting mass from the surface of the Earth to Earth escape without the need for external work to be done. Indeed the system performs net work by transferring energy from the Earth's rotation to the escaping mass. The dynamics of the siphon effect are explored and key engineering issues are identified.