Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The differential adsorption of silanes from solution onto model E-glass surfaces using high resolution XPS

Jones, F.R. and Liu, X.M. and Thomason, J.L. (2007) The differential adsorption of silanes from solution onto model E-glass surfaces using high resolution XPS. In: Silanes and Other Coupling Agents. VSP International Science Publishers, pp. 29-37. ISBN 978-9067-64452-5

[img]
Preview
PDF (strathprints006495.pdf)
strathprints006495.pdf

Download (232kB) | Preview

Abstract

γ-aminopropyltriethoxysilane (APS), γ-mercaptopropyltrimethoxysilane (MPS) and their mixture have been adsorbed onto acid-treated model E-glass fibres from aqueous solution with different concentrations. High resolution X-ray photoelectron spectroscopy (XPS) has been employed to characterize APS and MPS single silane coatings and the selective adsorption of APS/MPS mixed silane coating. It is found that the Si contribution from the silane can be distinguished from the Si contribution from the acid-treated E-glass fibres by fitting Si2p1/2 and Si2p3/2 peaks with components for CSiO3 and SiO4 environments. The adsorption isotherms of APS and MPS have been obtained by comparing the atomic concentrations of N, S and CSiO3 groups. APS and MPS are equally adsorbed from 0.1% APS/MPS mixed silane solution, however, MPS dominates the deposit on model E-glass fibres to a depth corresponding to the take-off-angle of 45º when it is adsorbed from 0.5% and 1.0% APS/MPS mixed silane solutions.