Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs

Abbott, B. and Abbott, R. and Adhikari, R. and Agresti, J. and Ajith, P. and Allen, B. and Amin, R. and Lockerbie, N.A. (2008) Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D: Particles and Fields, 77 (6). 062004/1-062004/22. ISSN 0556-2821

[img]
Preview
PDF (strathprints006488.pdf)
strathprints006488.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

We present the results of a search for short-duration gravitational-wave bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray satellite experiments during LIGO's S2, S3, and S4 science runs. The search involves calculating the crosscorrelation between two interferometer data streams surrounding the GRB trigger time. We search for associated gravitational radiation from single GRBs, and also apply statistical tests to search for a gravitational-wave signature associated with the whole sample. For the sample examined, we find no evidence for the association of gravitational radiation with GRBs, either on a single-GRB basis or on a statistical basis. Simulating gravitational-wave bursts with sine-Gaussian waveforms, we set upper limits on the root-sum-square of the gravitational-wave strain amplitude of such waveforms at the times of the GRB triggers. We also demonstrate how a sample of several GRBs can be used collectively to set constraints on population models. The small number of GRBs and the significant change in sensitivity of the detectors over the three runs, however, limits the usefulness of a population study for the S2, S3, and S4 runs. Finally, we discuss prospects for the search sensitivity for the ongoing S5 run, and beyond for the next generation of detectors.