Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds

Abbott, B. and Abbott, R. and Adhikari, R. and Agresti, J. and Ajith, P. and Allen, B. and Amin, R. and Anderson, S.B. and Lockerbie, N.A. and , LIGO Sci Collaboration and , ALLEGRO Collaboration (2007) First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D: Particles and Fields, 76 (2). 022001/1-022001/17. ISSN 0556-2821

[img]
Preview
PDF (strathprints006483.pdf)
strathprints006483.pdf

Download (1MB) | Preview

Abstract

Data from the LIGO Livingston interferometer and the ALLEGRO resonant-bar detector, taken during LIGO's fourth science run, were examined for cross correlations indicative of a stochastic gravitational-wave background in the frequency range 850-950 Hz, with most of the sensitivity arising between 905 and 925 Hz. ALLEGRO was operated in three different orientations during the experiment to modulate the relative sign of gravitational-wave and environmental correlations. No statistically significant correlations were seen in any of the orientations, and the results were used to set a Bayesian 90% confidence level upper limit of Omegagw(f)<=1.02, which corresponds to a gravitational-wave strain at 915 Hz of 1.5×10-23 Hz-1/2. In the traditional units of h1002Omegagw(f), this is a limit of 0.53, 2 orders of magnitude better than the previous direct limit at these frequencies. The method was also validated with successful extraction of simulated signals injected in hardware and software.