Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO

Abbott, B. and Abbott, R. and Adhikari, R. and Agresti, J. and Ajith, P. and Allen, B. and Amin, R. and Lockerbie, N.A. and , LIGO Sci Collaboration (2007) Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO. Physical Review D: Particles and Fields, 76 (6). 062003/1-062003/12. ISSN 0556-2821

[img]
Preview
PDF (strathprints006479.pdf)
Download (346Kb) | Preview

    Abstract

    We have searched for gravitational waves (GWs) associated with the SGR 1806-20 hyperflare of 27 December 2004. This event, originating from a Galactic neutron star, displayed exceptional energetics. Recent investigations of the x-ray light curve's pulsating tail revealed the presence of quasiperiodic oscillations (QPOs) in the 30-2000 Hz frequency range, most of which coincides with the bandwidth of the LIGO detectors. These QPOs, with well-characterized frequencies, can plausibly be attributed to seismic modes of the neutron star which could emit GWs. Our search targeted potential quasimonochromatic GWs lasting for tens of seconds and emitted at the QPO frequencies. We have observed no candidate signals above a predetermined threshold, and our lowest upper limit was set by the 92.5 Hz QPO observed in the interval from 150 s to 260 s after the start of the flare. This bound corresponds to a (90% confidence) root-sum-squared amplitude hrss-det90%=4.5×10-22 strain Hz-1/2 on the GW waveform strength in the detectable polarization state reaching our Hanford (WA) 4 km detector. We illustrate the astrophysical significance of the result via an estimated characteristic energy in GW emission that we would expect to be able to detect. The above result corresponds to 7.7×1046 erg (=4.3×10-8 M[sun]c2), which is of the same order as the total (isotropic) energy emitted in the electromagnetic spectrum. This result provides a means to probe the energy reservoir of the source with the best upper limit on the GW waveform strength published and represents the first broadband asteroseismology measurement using a GW detector.

    Item type: Article
    ID code: 6479
    Keywords: gravitational waves, hyperflare, galactic neutron star, x-ray, light curve, quasiperiodic oscillations, bandwidth, seismic modes, Optics. Light, Astronomy, Physics, Physics and Astronomy (miscellaneous)
    Subjects: Science > Physics > Optics. Light
    Science > Astronomy
    Science > Physics
    Department: Faculty of Science > Physics
    Related URLs:
    Depositing user: Miss Darcy Spiller
    Date Deposited: 08 Jul 2008
    Last modified: 05 Sep 2014 00:00
    URI: http://strathprints.strath.ac.uk/id/eprint/6479

    Actions (login required)

    View Item

    Fulltext Downloads: