Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Photodesorption of CO Ice

Öberg, Karin I. and Fuchs, Guido W. and Awad, Zainab and Fraser, Helen J. and Schlemmer, Stephan and van Dishoeck, Ewine F. and Linnartz, Harold (2007) Photodesorption of CO Ice. Astrophysical Journal, 662 (1). L23-L26. ISSN 0004-637X

[img]
Preview
PDF (strathprints006460.pdf)
strathprints006460.pdf

Download (255kB) | Preview

Abstract

At the high densities and low temperatures found in star-forming regions, all molecules other than H2 should stick on dust grains on timescales shorter than the cloud lifetimes. Yet these clouds are detected in the millimeter lines of gaseous CO. At these temperatures, thermal desorption is negligible, and hence a nonthermal desorption mechanism is necessary to maintain molecules in the gas phase. Here the first laboratory study of the photodesorption of pure CO ice under ultra-high vacuum conditions is presented, which gives a desorption rate of CO molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of larger than previously estimated and is comparable to estimates of other nonthermal desorption rates. The experiments constrain the mechanism to a single photon desorption process of ice surface molecules. The measured efficiency of this process shows that the role of CO photodesorption in preventing total removal of molecules in the gas has been underestimated.