Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths

Thomason, J.L. and Kalinka, G. (2001) A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths. Composites Part A: Applied Science and Manufacturing, 32 (1). pp. 85-90. ISSN 1359-835X

PDF (strathprints006433.pdf)

Download (713kB) | Preview


The strength of composite reinforcement fibres is normally measured on samples of much greater length than the actual residual fibre lengths found in many composite materials. This is due to a number of limitations of the standard techniques which are employed. We present a description of a technique which enables values for the tensile strength of composite reinforcement fibres at short gauge lengths to be obtained. The technique is based on an adaptation of a micro-mechanical test apparatus for fibre pullout measurements. Data is presented which was obtained at gauge lengths of 180-380 m on E-glass and S-2 glass® fibres taken from different chopped reinforcement products. The technique can be used at gauge lengths as short as 20 m. The data indicates that the values of average fibre strength in these products are significantly below the pristine glass strength values.