Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths

Thomason, J.L. and Kalinka, G. (2001) A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths. Composites Part A: Applied Science and Manufacturing, 32 (1). pp. 85-90. ISSN 1359-835X

[img]
Preview
PDF (strathprints006433.pdf)
strathprints006433.pdf

Download (713kB) | Preview

Abstract

The strength of composite reinforcement fibres is normally measured on samples of much greater length than the actual residual fibre lengths found in many composite materials. This is due to a number of limitations of the standard techniques which are employed. We present a description of a technique which enables values for the tensile strength of composite reinforcement fibres at short gauge lengths to be obtained. The technique is based on an adaptation of a micro-mechanical test apparatus for fibre pullout measurements. Data is presented which was obtained at gauge lengths of 180-380 m on E-glass and S-2 glass® fibres taken from different chopped reinforcement products. The technique can be used at gauge lengths as short as 20 m. The data indicates that the values of average fibre strength in these products are significantly below the pristine glass strength values.