Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

A foundation for machine learning in design

Sim, Siang Kok and Duffy, Alex H.B. (1998) A foundation for machine learning in design. AI EDAM - Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 12 (2). pp. 193-209. ISSN 0890-0604

[img]
Preview
PDF (A foundation for machine learning in design)
A_foundation_for_machine_learning_in_design.pdf - Published Version

Download (506kB) | Preview

Abstract

This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in design (MLinD) is defined so as to provide answers to basic questions on learning in design, such as, "What types of knowledge can be learnt?", "How does learning occur?", and "When does learning occur?". Five main elements of MLinD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning, and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in order to fully formalize the foundation of MLinD.