Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Modelling the behaviour of domestic micro-cogeneration under different operating regimes and with variable thermal buffering

Beyer, Denny and Kelly, Nick (2008) Modelling the behaviour of domestic micro-cogeneration under different operating regimes and with variable thermal buffering. In: Micro-Cogen 2008, 1st International Conference on Micro-Cogeneration Technologies and Applications, 2008-04-29 - 2008-05-01.

PDF (strathprints006416.pdf)

Download (685kB) | Preview


In the UK large scale field trials (Carbon Trust, 2007) are underway to assess the performance of combustion based, domestic cogeneration devices with regards to both their carbon-saving potential and also their possible impact on the electricity distribution system. The preliminary results indicate that only modest carbon savings are achievable from these devices. However, in these trials the systems tested did not include any thermal buffering between the device and the heating system; hence the results give an incomplete picture of domestic cogeneration performance. This paper describes the preliminary outcomes from a comprehensive modelling exercise that explored the performance of domestic cogeneration for different UK housing types under different operational scenarios, and with and without thermal buffering. The simulation results indicate that thermal buffering has a dramatic effect on the performance and operational characteristics of micro-cogeneration devices however, due to standing losses in the thermal buffering, carbon emissions levels show only small variations. The results from these simulations are contrasted with the evidence emerging from the field trials and it is concluded that the model gives a realistic picture of performance.