Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Sparse experimental design: an effective an efficient way discovering better genetic algorithm structures

Stewardson, D.J. and Whitfield, R.I. and Hicks, C. and Pongcharoen, P. and Braiden, P. (2001) Sparse experimental design: an effective an efficient way discovering better genetic algorithm structures. In: 2nd European Conference on intelligent Management Systems in Operations, 2001-07-03 - 2001-07-04.

[img]
Preview
PDF (strathprints006388.pdf)
strathprints006388.pdf

Download (152kB) | Preview

Abstract

The focus of this paper is the demonstration that sparse experimental design is a useful strategy for developing Genetic Algorithms. It is increasingly apparent from a number of reports and papers within a variety of different problem domains that the 'best' structure for a GA may be dependent upon the application. The GA structure is defined as both the types of operators and the parameters settings used during operation. The differences observed may be linked to the nature of the problem, the type of fitness function, or the depth or breadth of the problem under investigation. This paper demonstrates that advanced experimental design may be adopted to increase the understanding of the relationships between the GA structure and the problem domain, facilitating the selection of improved structures with a minimum of effort.