Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Identifying and evaluating parallel design activities using the design structure matrix

Whitfield, R.I. and Duffy, A.H.B. and Kortabarria, L. (2005) Identifying and evaluating parallel design activities using the design structure matrix. In: Proceedings of the 15th International Conference on Engineering Design (ICED'05). Design Society. ISBN 0-85825-788-2

PDF (strathprints006370.pdf)

Download (485kB) | Preview


This paper describes an approach based upon the Design Structure Matrix (DSM) for identifying, evaluating and optimising one aspect of CE: activity parallelism. Concurrent Engineering (CE) has placed emphasis on the management of the product development process and one of its major benefits is the reduction in lead-time and product cost [1]. One approach that CE promotes for the reduction of lead-time is the simultaneous enactment of activities otherwise known as Simultaneous Engineering. Whilst activity parallelism may contribute to the reduction in lead-time and product cost, the effect of iteration is also recognised as a contributing factor on lead-time, and hence was also combined within the investigation. The paper describes how parallel activities may be identified within the DSM, before detailing how a process may be evaluated with respect to parallelism and iteration using the DSM. An optimisation algorithm is then utilised to establish a near-optimal sequence for the activities with respect to parallelism and iteration. DSM-based processes from previously published research are used to describe the development of the approach.