Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Synthesis, structure and theoretical studies of the hydrido inverse crown [K2Mg2(NiPr2)(4)(mu-H)(2)center dot(toluene)(2)] : a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge

Andrikopoulos, P.C. and Armstrong, D.R. and Kennedy, A.R. and Mulvey, R.E. and O'Hara, C.T. and Rowlings, R.B. (2003) Synthesis, structure and theoretical studies of the hydrido inverse crown [K2Mg2(NiPr2)(4)(mu-H)(2)center dot(toluene)(2)] : a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge. European Journal of Inorganic Chemistry, 2003 (18). pp. 3354-3362. ISSN 1434-1948

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Reaction of benzylpotassium, n,s-dibutylmagnesium and diisopropylamine in boiling toluene produces a rare example of a molecular magnesium hydride with a Mg-(mu-H)(2)-Mg double bridge, in [K2Mg2(NiPr2)(4)(mu-H)(2).(toluene)(2)] (1). In an effort to rationalise the formation of 1, a series of DFT calculations were performed. This report of 1 establishes the first isostructural pair of Na and K complexes solvated by toluene to be reported in the Cambridge Crystallographic Database. In comparison with its previously reported Na analogue, 2, the metal-arene centroid distances are considerably shorter (by 0.159 Angstrom) in the new complex reported here. It was found that a hydrocarbon solution of 1 is capable of reducing benzophenone to benzhydrol in moderate yields (74%).