Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Potential effects of optical solar sail degredation on trajectory design

Dachwald, Bernd and Baturkin, V. and Coverstone, V.L. and Diedrich, B. and Garbe, G. and Gorlich, M. and Leipold, M. and Lura, F. and Macdonald, M. and McInnes, C.R. and Mengali, Giovanni and Quarta, Alessandro A. and Rios-Reyes, L. and Scheeres, Daniel J. and Sebolt, Wolfgang and Wie, Bong (2005) Potential effects of optical solar sail degredation on trajectory design. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. American Institute of Aeronautics and Astronautics, pp. 2569-2592.

[img]
Preview
PDF (strathprints006267.pdf)
strathprints006267.pdf

Download (2MB) | Preview

Abstract

The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions.