Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Analysis of a solar sail mercury sample return mission

Hughes, Gareth W. and Macdonald, M. and McInnes, Colin and Atzei, A. and Falkner, P. (2004) Analysis of a solar sail mercury sample return mission. In: Proceedings of the 55th International Astronautical Congress. American Institute of Aeronautics and Astronautics, p. 197.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Solar sailing can be used to reduce lander mass allocation by delivering the lander to a low, thermally safe orbit close to the terminator. In addition, the ascending node of the solar sail parking orbit plane can be artificially forced to avoid out-of-plane manoeuvres during ascent from the planetary surface. Propellant mass is not an issue for solar sails so a sample can be returned relatively easily, without resorting to lengthy, multiple gravity assists. A 275 m solar sail with an assembly loading of 5.9 g m-2 is used to deliver a lander, cruise stage and science payload to a forced Sun-synchronous orbit at Mercury in 2.85 years. The lander acquires samples, and conducts limited surface exploration. An ascent vehicle delivers a small cold gas rendezvous vehicle containing the samples for transfer to the solar sail. The solar sail then spirals back to Earth in 1 year. The total mission launch mass is 2353 kg, on an H2A202-4S class launch vehicle (C3=0), with a ROM mission cost of 850 M¼1RPLQDOODXQFKLVLQ$SULO 2014 with sample return to Earth 4.4 years later. Solar sailing reduces launch mass by 60% and trip time by 40%, relative to conventional mission concepts. Propellant mass is not an issue for solar sails so a sample can be returned relatively easily, without resorting to lengthy, multiple gravity assists. A 275 m solar sail with an assembly loading of 5.9 g m-2 is used to deliver a lander, cruise stage and science payload to a forced Sun-synchronous orbit at Mercury in 2.85 years. The lander acquires samples, and conducts limited surface exploration. An ascent vehicle delivers a small cold gas rendezvous vehicle containing the samples for transfer to the solar sail. The solar sail then spirals back to Earth in 1 year. Solar sailing reduces launch mass by 60% and trip time by 40%, relative to conventional mission concepts.