Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Analytical control laws for planet-centred solar sailing

Macdonald, M. and McInnes, C.R. (2005) Analytical control laws for planet-centred solar sailing. Journal of Guidance, Control and Dynamics, 28 (5). pp. 1038-1048. ISSN 0731-5090

[img] Microsoft Word (McInnes_CR_&_Macdonald_M_-_strathprints_-_Analytical_control_laws_for_planet-centred_solar_sailing_Mar_2010.doc)
McInnes_CR_&_Macdonald_M_-_strathprints_-_Analytical_control_laws_for_planet-centred_solar_sailing_Mar_2010.doc

Download (3MB)

Abstract

With increased interest in solar sailing from both ESA and NASA for future science missions comes the requirement to assess potential planet-centered orbits and generate algorithms for effective orbit maneuvering and control. Previous planet-centered solar-sail trajectory work has been limited mostly to Earth-escape or lunar flyby trajectories as a result of the difficulties of fully optimizing multirevolution orbits.Anew method of blending locally optimal control laws is introduced, where each control law is prioritized by consideration of how efficiently it will use the solar sail and how far each orbital element is from its target value. The blended, locally optimal sail thrust vector is thus defined to use the sail as efficiently as possible, allowing the rapid generation of near-optimal trajectories. The blending method introduced is demonstrated for a complex orbit transfer and for two stationkeeping applications. Furthermore, the algorithms developed are explicitly independent of time, and as such the control system is demonstrated suitable as a potential future onboard sail controller.