Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Spacecraft planetary capture using gravity assist manoeuvres

Macdonald, M. and McInnes, C.R. (2005) Spacecraft planetary capture using gravity assist manoeuvres. Journal of Guidance, Control and Dynamics, 28 (2). pp. 365-369. ISSN 0731-5090

[img] Microsoft Word (McInnes_CR_&_Macdonald_M_-_strathprints_-_Spacecraft_planetary_capture_using_gravity_assist_manoeuvres_Mar_2010.doc)
McInnes_CR_&_Macdonald_M_-_strathprints_-_Spacecraft_planetary_capture_using_gravity_assist_manoeuvres_Mar_2010.doc

Download (154kB)

Abstract

If the arrival speed at a target body can be increased from the very low hyperbolic excesses required to perform a low-thrust capture maneuver, then potentially significant savings can be made in the heliocentric mission duration if a bound orbit about the target planet can be maintained. We define a bound orbit as having an apoapsis that is positive but less than infinity; however, because this is not a practical limit and is instead a theoretical limit we examine the impact of reducing the target apoapsis to more realistic and useful values within specific case studies. Furthermore, an increase in arrival velocity can be expected to yield a benefit in mission launch mass.