Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Terrestrial planet sample return missions using solar sail propulsion

Hughes, Gareth W. and Macdonald, M. and McInnes, Colin (2006) Terrestrial planet sample return missions using solar sail propulsion. ESA European Space Agency Bulletin, 59 (8-11). pp. 797-806. ISSN 0376-4265

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An assessment of terrestrial planet sample return missions utilising solar sail propulsion is presented, in addition to sample return from a high inclination near-Earth asteroid, 2001 QP153. Payloads have been sized based on existing studies or have been custom designed and sized. Heliocentric and planetocentric trajectory analysis has been conducted to assess the sail performance level required to return samples within a reasonable timescale, whilst maintaining manageable sail dimensions. Sail technology is based on projected data from existing development programmes. Solar sailing appears to offer modest benefits in returning a sample from Mars or Venus, but significant benefits for Mercury Sample Return. In addition, sample return from high-energy targets such as asteroid 2001 QP153 appears to be only possible when using the solar sail as the enabling propulsion technology.