Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Autonomous behavioural algorithm for space applications

Radice, Gianmarco and McInnes, Colin (2003) Autonomous behavioural algorithm for space applications. Aeronautical Journal, 107 (1074). pp. 521-527. ISSN 0001-9240

[img]
Preview
PDF (strathprints006242.pdf)
strathprints006242.pdf

Download (395kB) | Preview

Abstract

We present a new approach in the concept and implementation of autonomy for autonomous spacecraft. The one true 'artificial agent' approach to autonomy requires the spacecraft to interact in a direct manner with the environment through the use of sensors and actuators. Rather than using complex world models, the spacecraft is allowed to exploit the dynamics of its environment for cues as to appropriate actions to take to achieve its mission goals. The particular artificial agent implementation used here has been inspired by studies of biological systems. The so-called 'cue-deficit' action selection algorithm considers the spacecraft to be a non-linear dynamical system with a number of observable states. Using optimal control theory a set of rules is derived which determine which of a finite repertoire of behaviours the spacecraft will perform. A simple model of a single imaging spacecraft in low polar Earth orbit is used to demonstrate the algorithm.