Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Instability of fixed, low-thrust drag compensation

McInnes, C.R. (2003) Instability of fixed, low-thrust drag compensation. Journal of Guidance, Control and Dynamics, 26 (4). pp. 655-657. ISSN 0731-5090

[img]
Preview
PDF (strathprints006241.pdf)
strathprints006241.pdf

Download (125kB) | Preview

Abstract

FORCED drag compensation using continuous low-thrust propulsion has been considered for satellites in low Earth orbit. This simple, but nonoptimal, scheme merely requires that the thrust vector is directed opposite to the drag vector and that the magnitude of the two are equal. In principle, the drag force acting on the spacecraft could be determined onboard using accurate accelerometers. However, for small, low-cost spacecraft such sensors may be unavailable.An alternative strategy would be to Ž x the thrust magnitude equal to the expected air drag that would be experienced by the spacecraft. The thrust levelwould be periodically updated based on ground-based orbit determination. In this Engineering Note, it is shown that such a forced circular orbit with a Ž fixed thrust level is exponentially unstable for all physically reasonable atmosphere models.