Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Astronautical engineering revisited: planetary orbit modification using solar radiation pressure

McInnes, C.R. (2002) Astronautical engineering revisited: planetary orbit modification using solar radiation pressure. Astrophysics and Space Science, 282 (4). pp. 765-772. ISSN 0004-640X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

As the Sun evolves along the main sequence its luminosity will grow, leading to a steadily increasing solar flux at the Earth with corresponding catastrophic consequences for the biosphere. A novel means of avoiding this terminal route to human evolution has recently been proposed by Korycansky et al. which utilises a series of grazing fly-pasts of the Earth with a small solar system body to increase the orbit radius of the Earth over a timescale of order 109 years. This short paper will propose an alternative strategy which utilises a large reflective sail to generate a propulsive thrust due to solar radiation pressure. It will be shown that if the sail is configured to be in static equilibrium relative to the Earth, the centre-of-mass of the Earth-sail system slowly accelerates. This scheme offers some advantages in that the mass of the sail is four orders of magnitude less than the mass to be processed in the scheme of Korycanskyet al. for trajectory correction manoeuvres alone. In addition, the severe hazard posed by multiple grazing fly-pasts of the Earth by a small solar system body is avoided. Although offering significant advantages, any thoughts of engineering on an astronomical scale clearly requires a leap of the imagination and a ready use of liberal assumptions.