Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Payload mass fraction optimization for solar cargo missions

McInnes, Colin and Hughes, Gareth W. and Macdonald, M. (2002) Payload mass fraction optimization for solar cargo missions. Journal of Spacecraft and Rockets, 39 (6). pp. 933-935. ISSN 0022-4650

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

SOLAR sailing offers the potential to reduce the required initial mass in low Earth orbit for future piloted Mars missions.1¡3 Athough solar sailing does not appear to be suitable for crew transport, it can be an extremely efŽ cient mode of propulsion for the transport of logistics in support of a human crew. This may include premission caching of logistics and/or resupply missions to support long-duration surface stays. Because solar sails do not require reaction mmass, a single solar sail may, in principle, be used for multiple Earth-Mars-Earth round trips. The limit to the number of round trips that can be made by a single solar sail will be dictated largely by the lifetime of the sail Ž lm in the space environment. Previous studies of the solar sail cargo mission problem have considered either point designs1 or have considered speciŽ c launch opportunities.2 However, a key question that arises when considering the use of solar sails for round-trip logistic supply missions is the optimum payload mass fraction of the solar sail. As the payload mass fraction of the solar sail is increased, a greater payload mass is delivered, but the trip time will also increase. Similarly, as the payload mass fraction of the solar sail is decreased, a smaller payload is delivered, but with a shorter trip time. The payload mass fractionthat is selectedshould, therefore,be chosento balancethese two effects and maximize the mean rate of payload mass transfer to Mars.

Item type: Article
ID code: 6235
Keywords: planets, mars, payloads, guidance systems, solar sails, Mechanical engineering and machinery, Motor vehicles. Aeronautics. Astronautics, Space and Planetary Science, Aerospace Engineering
Subjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. Astronautics
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Technology and Innovation Centre > Advanced Engineering and Manufacturing
Related URLs:
Depositing user: Strathprints Administrator
Date Deposited: 12 Jun 2008
Last modified: 02 Jun 2014 10:46
URI: http://strathprints.strath.ac.uk/id/eprint/6235

Actions (login required)

View Item